mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-06 07:06:42 +08:00
Merge branch 'jian' of github.com:JianWangUCD/leetcode-master into jian
This commit is contained in:
@ -715,26 +715,65 @@ object Solution {
|
||||
### C#:
|
||||
|
||||
```csharp
|
||||
public class Solution {
|
||||
public int[][] GenerateMatrix(int n) {
|
||||
int[][] answer = new int[n][];
|
||||
for(int i = 0; i < n; i++)
|
||||
answer[i] = new int[n];
|
||||
int start = 0;
|
||||
int end = n - 1;
|
||||
int tmp = 1;
|
||||
while(tmp < n * n)
|
||||
{
|
||||
for(int i = start; i < end; i++) answer[start][i] = tmp++;
|
||||
for(int i = start; i < end; i++) answer[i][end] = tmp++;
|
||||
for(int i = end; i > start; i--) answer[end][i] = tmp++;
|
||||
for(int i = end; i > start; i--) answer[i][start] = tmp++;
|
||||
start++;
|
||||
end--;
|
||||
}
|
||||
if(n % 2 == 1) answer[n / 2][n / 2] = tmp;
|
||||
return answer;
|
||||
public int[][] GenerateMatrix(int n)
|
||||
{
|
||||
// 参考Carl的代码随想录里面C++的思路
|
||||
// https://www.programmercarl.com/0059.%E8%9E%BA%E6%97%8B%E7%9F%A9%E9%98%B5II.html#%E6%80%9D%E8%B7%AF
|
||||
int startX = 0, startY = 0; // 定义每循环一个圈的起始位置
|
||||
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
|
||||
int count = 1; // 用来给矩阵每个空格赋值
|
||||
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
|
||||
int offset = 1;// 需要控制每一条边遍历的长度,每次循环右边界收缩一位
|
||||
|
||||
// 构建result二维数组
|
||||
int[][] result = new int[n][];
|
||||
for (int k = 0; k < n; k++)
|
||||
{
|
||||
result[k] = new int[n];
|
||||
}
|
||||
|
||||
int i = 0, j = 0; // [i,j]
|
||||
while (loop > 0)
|
||||
{
|
||||
i = startX;
|
||||
j = startY;
|
||||
// 四个For循环模拟转一圈
|
||||
// 第一排,从左往右遍历,不取最右侧的值(左闭右开)
|
||||
for (; j < n - offset; j++)
|
||||
{
|
||||
result[i][j] = count++;
|
||||
}
|
||||
// 右侧的第一列,从上往下遍历,不取最下面的值(左闭右开)
|
||||
for (; i < n - offset; i++)
|
||||
{
|
||||
result[i][j] = count++;
|
||||
}
|
||||
|
||||
// 最下面的第一行,从右往左遍历,不取最左侧的值(左闭右开)
|
||||
for (; j > startY; j--)
|
||||
{
|
||||
result[i][j] = count++;
|
||||
}
|
||||
|
||||
// 左侧第一列,从下往上遍历,不取最左侧的值(左闭右开)
|
||||
for (; i > startX; i--)
|
||||
{
|
||||
result[i][j] = count++;
|
||||
}
|
||||
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
|
||||
startX++;
|
||||
startY++;
|
||||
|
||||
// offset 控制每一圈里每一条边遍历的长度
|
||||
offset++;
|
||||
loop--;
|
||||
}
|
||||
if (n % 2 == 1)
|
||||
{
|
||||
// n 为奇数
|
||||
result[mid][mid] = count;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -130,8 +130,8 @@ public:
|
||||
};
|
||||
```
|
||||
|
||||
* 时间复杂度:$O(n)$
|
||||
* 空间复杂度:$O(n)$
|
||||
* 时间复杂度:O(n)
|
||||
* 空间复杂度:O(n)
|
||||
|
||||
当然依然也可以,优化一下空间复杂度,代码如下:
|
||||
|
||||
@ -154,8 +154,8 @@ public:
|
||||
};
|
||||
```
|
||||
|
||||
* 时间复杂度:$O(n)$
|
||||
* 空间复杂度:$O(1)$
|
||||
* 时间复杂度:O(n)
|
||||
* 空间复杂度:O(1)
|
||||
|
||||
后面将讲解的很多动规的题目其实都是当前状态依赖前两个,或者前三个状态,都可以做空间上的优化,**但我个人认为面试中能写出版本一就够了哈,清晰明了,如果面试官要求进一步优化空间的话,我们再去优化**。
|
||||
|
||||
@ -524,3 +524,4 @@ impl Solution {
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
</a>
|
||||
|
||||
|
@ -1231,6 +1231,47 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
#### C#:
|
||||
|
||||
```C# 199.二叉树的右视图
|
||||
public class Solution
|
||||
{
|
||||
public IList<int> RightSideView(TreeNode root)
|
||||
{
|
||||
var result = new List<int>();
|
||||
Queue<TreeNode> queue = new();
|
||||
|
||||
if (root != null)
|
||||
{
|
||||
queue.Enqueue(root);
|
||||
}
|
||||
while (queue.Count > 0)
|
||||
{
|
||||
int count = queue.Count;
|
||||
int lastValue = count - 1;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
var currentNode = queue.Dequeue();
|
||||
if (i == lastValue)
|
||||
{
|
||||
result.Add(currentNode.val);
|
||||
}
|
||||
|
||||
// lastValue == i == count -1 : left 先于 right 进入Queue
|
||||
if (currentNode.left != null) queue.Enqueue(currentNode.left);
|
||||
if (currentNode.right != null) queue.Enqueue(currentNode.right);
|
||||
|
||||
//// lastValue == i == 0: right 先于 left 进入Queue
|
||||
// if(currentNode.right !=null ) queue.Enqueue(currentNode.right);
|
||||
// if(currentNode.left !=null ) queue.Enqueue(currentNode.left);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 637.二叉树的层平均值
|
||||
|
||||
[力扣题目链接](https://leetcode.cn/problems/average-of-levels-in-binary-tree/)
|
||||
@ -1558,6 +1599,35 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
#### C#:
|
||||
|
||||
```C# 二叉树的层平均值
|
||||
public class Solution {
|
||||
public IList<double> AverageOfLevels(TreeNode root) {
|
||||
var result= new List<double>();
|
||||
Queue<TreeNode> queue = new();
|
||||
if(root !=null) queue.Enqueue(root);
|
||||
|
||||
while (queue.Count > 0)
|
||||
{
|
||||
int count = queue.Count;
|
||||
double value=0;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
var curentNode=queue.Dequeue();
|
||||
value += curentNode.val;
|
||||
if (curentNode.left!=null) queue.Enqueue(curentNode.left);
|
||||
if (curentNode.right!=null) queue.Enqueue(curentNode.right);
|
||||
}
|
||||
result.Add(value/count);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
## 429.N叉树的层序遍历
|
||||
|
||||
[力扣题目链接](https://leetcode.cn/problems/n-ary-tree-level-order-traversal/)
|
||||
|
@ -40,7 +40,7 @@
|
||||
本题依然是前序遍历和后序遍历都可以,前序求的是深度,后序求的是高度。
|
||||
|
||||
* 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
|
||||
* 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)
|
||||
* 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)
|
||||
|
||||
那么使用后序遍历,其实求的是根节点到叶子节点的最小距离,就是求高度的过程,不过这个最小距离 也同样是最小深度。
|
||||
|
||||
|
@ -489,6 +489,67 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
### C:
|
||||
|
||||
```c
|
||||
int str_to_int(char *str) {
|
||||
// string转integer
|
||||
int num = 0, tens = 1;
|
||||
for (int i = strlen(str) - 1; i >= 0; i--) {
|
||||
if (str[i] == '-') {
|
||||
num *= -1;
|
||||
break;
|
||||
}
|
||||
num += (str[i] - '0') * tens;
|
||||
tens *= 10;
|
||||
}
|
||||
return num;
|
||||
}
|
||||
|
||||
int evalRPN(char** tokens, int tokensSize) {
|
||||
|
||||
int *stack = (int *)malloc(tokensSize * sizeof(int));
|
||||
assert(stack);
|
||||
int stackTop = 0;
|
||||
|
||||
for (int i = 0; i < tokensSize; i++) {
|
||||
char symbol = (tokens[i])[0];
|
||||
if (symbol < '0' && (tokens[i])[1] == '\0') {
|
||||
|
||||
// pop两个数字
|
||||
int num1 = stack[--stackTop];
|
||||
int num2 = stack[--stackTop];
|
||||
|
||||
// 计算结果
|
||||
int result;
|
||||
if (symbol == '+') {
|
||||
result = num1 + num2;
|
||||
} else if (symbol == '-') {
|
||||
result = num2 - num1;
|
||||
} else if (symbol == '/') {
|
||||
result = num2 / num1;
|
||||
} else {
|
||||
result = num1 * num2;
|
||||
}
|
||||
|
||||
// push回stack
|
||||
stack[stackTop++] = result;
|
||||
|
||||
} else {
|
||||
|
||||
// push数字进stack
|
||||
int num = str_to_int(tokens[i]);
|
||||
stack[stackTop++] = num;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
int result = stack[0];
|
||||
free(stack);
|
||||
return result;
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -1277,6 +1277,95 @@ impl MyStack {
|
||||
}
|
||||
```
|
||||
|
||||
### C:
|
||||
|
||||
> C:单队列
|
||||
|
||||
```c
|
||||
typedef struct Node {
|
||||
int val;
|
||||
struct Node *next;
|
||||
} Node_t;
|
||||
|
||||
// 用单向链表实现queue
|
||||
typedef struct {
|
||||
Node_t *head;
|
||||
Node_t *foot;
|
||||
int size;
|
||||
} MyStack;
|
||||
|
||||
MyStack* myStackCreate() {
|
||||
MyStack *obj = (MyStack *)malloc(sizeof(MyStack));
|
||||
assert(obj);
|
||||
obj->head = NULL;
|
||||
obj->foot = NULL;
|
||||
obj->size = 0;
|
||||
return obj;
|
||||
}
|
||||
|
||||
void myStackPush(MyStack* obj, int x) {
|
||||
|
||||
Node_t *temp = (Node_t *)malloc(sizeof(Node_t));
|
||||
assert(temp);
|
||||
temp->val = x;
|
||||
temp->next = NULL;
|
||||
|
||||
// 添加至queue末尾
|
||||
if (obj->foot) {
|
||||
obj->foot->next = temp;
|
||||
} else {
|
||||
obj->head = temp;
|
||||
}
|
||||
obj->foot = temp;
|
||||
obj->size++;
|
||||
}
|
||||
|
||||
int myStackPop(MyStack* obj) {
|
||||
|
||||
// 获取末尾元素
|
||||
int target = obj->foot->val;
|
||||
|
||||
if (obj->head == obj->foot) {
|
||||
free(obj->foot);
|
||||
obj->head = NULL;
|
||||
obj->foot = NULL;
|
||||
} else {
|
||||
|
||||
Node_t *prev = obj->head;
|
||||
// 移动至queue尾部节点前一个节点
|
||||
while (prev->next != obj->foot) {
|
||||
prev = prev->next;
|
||||
}
|
||||
|
||||
free(obj->foot);
|
||||
obj->foot = prev;
|
||||
obj->foot->next = NULL;
|
||||
}
|
||||
|
||||
obj->size--;
|
||||
return target;
|
||||
}
|
||||
|
||||
int myStackTop(MyStack* obj) {
|
||||
return obj->foot->val;
|
||||
}
|
||||
|
||||
bool myStackEmpty(MyStack* obj) {
|
||||
return obj->size == 0;
|
||||
}
|
||||
|
||||
void myStackFree(MyStack* obj) {
|
||||
Node_t *curr = obj->head;
|
||||
while (curr != NULL) {
|
||||
Node_t *temp = curr->next;
|
||||
free(curr);
|
||||
curr = temp;
|
||||
}
|
||||
free(obj);
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -99,7 +99,7 @@ if (cur == NULL) return cur;
|
||||
|
||||
* 确定单层递归的逻辑
|
||||
|
||||
在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭又闭)
|
||||
在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭右闭)
|
||||
|
||||
那么如果 cur->val 大于 p->val,同时 cur->val 大于q->val,那么就应该向左遍历(说明目标区间在左子树上)。
|
||||
|
||||
|
@ -890,6 +890,38 @@ public:
|
||||
};
|
||||
```
|
||||
|
||||
### C
|
||||
|
||||
```c
|
||||
int* maxSlidingWindow(int* nums, int numsSize, int k, int* returnSize) {
|
||||
*returnSize = numsSize - k + 1;
|
||||
int *res = (int*)malloc((*returnSize) * sizeof(int));
|
||||
assert(res);
|
||||
int *deque = (int*)malloc(numsSize * sizeof(int));
|
||||
assert(deque);
|
||||
int front = 0, rear = 0, idx = 0;
|
||||
|
||||
for (int i = 0 ; i < numsSize ; i++) {
|
||||
while (front < rear && deque[front] <= i - k) {
|
||||
front++;
|
||||
}
|
||||
|
||||
while (front < rear && nums[deque[rear - 1]] <= nums[i]) {
|
||||
rear--;
|
||||
}
|
||||
|
||||
deque[rear++] = i;
|
||||
|
||||
if (i >= k - 1) {
|
||||
res[idx++] = nums[deque[front]];
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -123,6 +123,9 @@ public:
|
||||
### Java:
|
||||
版本一:使用HashSet
|
||||
```Java
|
||||
// 时间复杂度O(n+m+k) 空间复杂度O(n+k)
|
||||
// 其中n是数组nums1的长度,m是数组nums2的长度,k是交集元素的个数
|
||||
|
||||
import java.util.HashSet;
|
||||
import java.util.Set;
|
||||
|
||||
@ -145,8 +148,15 @@ class Solution {
|
||||
}
|
||||
|
||||
//方法1:将结果集合转为数组
|
||||
|
||||
return resSet.stream().mapToInt(x -> x).toArray();
|
||||
return res.stream().mapToInt(Integer::intValue).toArray();
|
||||
/**
|
||||
* 将 Set<Integer> 转换为 int[] 数组:
|
||||
* 1. stream() : Collection 接口的方法,将集合转换为 Stream<Integer>
|
||||
* 2. mapToInt(Integer::intValue) :
|
||||
* - 中间操作,将 Stream<Integer> 转换为 IntStream
|
||||
* - 使用方法引用 Integer::intValue,将 Integer 对象拆箱为 int 基本类型
|
||||
* 3. toArray() : 终端操作,将 IntStream 转换为 int[] 数组。
|
||||
*/
|
||||
|
||||
//方法2:另外申请一个数组存放setRes中的元素,最后返回数组
|
||||
int[] arr = new int[resSet.size()];
|
||||
@ -538,3 +548,4 @@ end
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
</a>
|
||||
|
||||
|
@ -879,6 +879,52 @@ public int[] GetNext(string s)
|
||||
}
|
||||
```
|
||||
|
||||
### C
|
||||
|
||||
```c
|
||||
// 前缀表不减一
|
||||
int *build_next(char* s, int len) {
|
||||
|
||||
int *next = (int *)malloc(len * sizeof(int));
|
||||
assert(next);
|
||||
|
||||
// 初始化前缀表
|
||||
next[0] = 0;
|
||||
|
||||
// 构建前缀表表
|
||||
int i = 1, j = 0;
|
||||
while (i < len) {
|
||||
if (s[i] == s[j]) {
|
||||
j++;
|
||||
next[i] = j;
|
||||
i++;
|
||||
} else if (j > 0) {
|
||||
j = next[j - 1];
|
||||
} else {
|
||||
next[i] = 0;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return next;
|
||||
}
|
||||
|
||||
bool repeatedSubstringPattern(char* s) {
|
||||
|
||||
int len = strlen(s);
|
||||
int *next = build_next(s, len);
|
||||
bool result = false;
|
||||
|
||||
// 检查最小重复片段能否被长度整除
|
||||
if (next[len - 1]) {
|
||||
result = len % (len - next[len - 1]) == 0;
|
||||
}
|
||||
|
||||
free(next);
|
||||
return result;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
@ -670,18 +670,26 @@ class Solution:
|
||||
|
||||
# 创建二维动态规划数组,行表示选取的元素数量,列表示累加和
|
||||
dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]
|
||||
dp = [[0] * (target_sum + 1) for _ in range(len(nums))]
|
||||
|
||||
# 初始化状态
|
||||
dp[0][0] = 1
|
||||
if nums[0] <= target_sum:
|
||||
dp[0][nums[0]] = 1
|
||||
numZero = 0
|
||||
for i in range(len(nums)):
|
||||
if nums[i] == 0:
|
||||
numZero += 1
|
||||
dp[i][0] = int(math.pow(2, numZero))
|
||||
|
||||
# 动态规划过程
|
||||
for i in range(1, len(nums) + 1):
|
||||
for i in range(1, len(nums)):
|
||||
for j in range(target_sum + 1):
|
||||
dp[i][j] = dp[i - 1][j] # 不选取当前元素
|
||||
if j >= nums[i - 1]:
|
||||
dp[i][j] += dp[i - 1][j - nums[i - 1]] # 选取当前元素
|
||||
dp[i][j] += dp[i - 1][j - nums[i]] # 选取当前元素
|
||||
|
||||
return dp[len(nums)][target_sum] # 返回达到目标和的方案数
|
||||
return dp[len(nums)-1][target_sum] # 返回达到目标和的方案数
|
||||
|
||||
|
||||
```
|
||||
|
@ -546,7 +546,7 @@ object Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
## C
|
||||
### C
|
||||
|
||||
```c
|
||||
int change(int amount, int* coins, int coinsSize) {
|
||||
@ -593,37 +593,3 @@ public class Solution
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
</a>
|
||||
|
||||
----------
|
||||
|
||||
|
||||
|
||||
回归本题,动规五步曲来分析如下:
|
||||
|
||||
1. 确定dp数组以及下标的含义
|
||||
|
||||
dp[j]:凑成总金额j的货币组合数为dp[j]
|
||||
|
||||
2. 确定递推公式
|
||||
|
||||
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
|
||||
|
||||
所以递推公式:dp[j] += dp[j - coins[i]];
|
||||
|
||||
**这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇[494. 目标和](https://programmercarl.com/0494.目标和.html)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];**
|
||||
|
||||
3. dp数组如何初始化
|
||||
|
||||
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。
|
||||
|
||||
那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。
|
||||
|
||||
但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。
|
||||
|
||||
这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。
|
||||
|
||||
下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]
|
||||
|
||||
dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
|
||||
|
||||
----------------
|
||||
|
@ -212,13 +212,14 @@ public class Main {
|
||||
int horizontalCut = 0;
|
||||
for (int i = 0; i < n; i++) {
|
||||
horizontalCut += horizontal[i];
|
||||
result = Math.min(result, Math.abs(sum - 2 * horizontalCut));
|
||||
result = Math.min(result, Math.abs((sum - horizontalCut) - horizontalCut));
|
||||
// 更新result。其中,horizontalCut表示前i行的和,sum - horizontalCut表示剩下的和,作差、取绝对值,得到题目需要的“A和B各自的子区域内的土地总价值之差”。下同。
|
||||
}
|
||||
|
||||
int verticalCut = 0;
|
||||
for (int j = 0; j < m; j++) {
|
||||
verticalCut += vertical[j];
|
||||
result = Math.min(result, Math.abs(sum - 2 * verticalCut));
|
||||
result = Math.min(result, Math.abs((sum - verticalCut) - verticalCut));
|
||||
}
|
||||
|
||||
System.out.println(result);
|
||||
|
Reference in New Issue
Block a user