Merge branch 'master' into master

This commit is contained in:
程序员Carl
2022-05-27 10:14:52 +08:00
committed by GitHub
46 changed files with 1046 additions and 156 deletions

View File

@ -39,7 +39,7 @@
分为如下几步:
* 首先这里我推荐大家使用虚拟头结点,这样方处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
* 首先这里我推荐大家使用虚拟头结点,这样方便处理删除实际头结点的逻辑,如果虚拟头结点不清楚,可以看这篇: [链表:听说用虚拟头节点会方便很多?](https://programmercarl.com/0203.移除链表元素.html)
* 定义fast指针和slow指针初始值为虚拟头结点如图

View File

@ -81,7 +81,7 @@ public:
**双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。**
都会一一介绍到,本题代码如下:
都会一一介绍到,本题代码如下:
```CPP
// 时间复杂度O(n)

View File

@ -318,6 +318,31 @@ func searchInsert(_ nums: [Int], _ target: Int) -> Int {
```
### PHP
```php
// 二分法(1)[左闭右闭]
function searchInsert($nums, $target)
{
$n = count($nums);
$l = 0;
$r = $n - 1;
while ($l <= $r) {
$mid = floor(($l + $r) / 2);
if ($nums[$mid] > $target) {
// 下次搜索在左区间:[$l,$mid-1]
$r = $mid - 1;
} else if ($nums[$mid] < $target) {
// 下次搜索在右区间:[$mid+1,$r]
$l = $mid + 1;
} else {
// 命中返回
return $mid;
}
}
return $r + 1;
}
```
-----------------------

View File

@ -370,18 +370,17 @@ func backtracking(startIndex,sum,target int,candidates,trcak []int,res *[][]int)
```js
var combinationSum = function(candidates, target) {
const res = [], path = [];
candidates.sort(); // 排序
candidates.sort((a,b)=>a-b); // 排序
backtracking(0, 0);
return res;
function backtracking(j, sum) {
if (sum > target) return;
if (sum === target) {
res.push(Array.from(path));
return;
}
for(let i = j; i < candidates.length; i++ ) {
const n = candidates[i];
if(n > target - sum) continue;
if(n > target - sum) break;
path.push(n);
sum += n;
backtracking(i, sum);

View File

@ -508,22 +508,27 @@ func backtracking(startIndex,sum,target int,candidates,trcak []int,res *[][]int)
*/
var combinationSum2 = function(candidates, target) {
const res = []; path = [], len = candidates.length;
candidates.sort();
candidates.sort((a,b)=>a-b);
backtracking(0, 0);
return res;
function backtracking(sum, i) {
if (sum > target) return;
if (sum === target) {
res.push(Array.from(path));
return;
}
let f = -1;
for(let j = i; j < len; j++) {
const n = candidates[j];
if(n > target - sum || n === f) continue;
if(j > i && candidates[j] === candidates[j-1]){
//若当前元素和前一个元素相等
//则本次循环结束,防止出现重复组合
continue;
}
//如果当前元素值大于目标值-总和的值
//由于数组已排序,那么该元素之后的元素必定不满足条件
//直接终止当前层的递归
if(n > target - sum) break;
path.push(n);
sum += n;
f = n;
backtracking(sum, j + 1);
path.pop();
sum -= n;

View File

@ -217,18 +217,26 @@ class Solution:
### Go
```Go
func jump(nums []int) int {
dp:=make([]int ,len(nums))
dp[0]=0
dp := make([]int, len(nums))
dp[0] = 0//初始第一格跳跃数一定为0
for i:=1;i<len(nums);i++{
dp[i]=i
for j:=0;j<i;j++{
if nums[j]+j>i{
dp[i]=min(dp[j]+1,dp[i])
}
}
}
return dp[len(nums)-1]
for i := 1; i < len(nums); i++ {
dp[i] = i
for j := 0; j < i; j++ {
if nums[j] + j >= i {//nums[j]为起点,j为往右跳的覆盖范围,这行表示从j能跳到i
dp[i] = min(dp[j] + 1, dp[i])//更新最小能到i的跳跃次数
}
}
}
return dp[len(nums)-1]
}
func min(a, b int) int {
if a < b {
return a
} else {
return b
}
}
```

View File

@ -212,6 +212,20 @@ func maxSubArray(nums []int) int {
}
```
### Rust
```rust
pub fn max_sub_array(nums: Vec<i32>) -> i32 {
let mut max_sum = i32::MIN;
let mut curr = 0;
for n in nums.iter() {
curr += n;
max_sum = max_sum.max(curr);
curr = curr.max(0);
}
max_sum
}
```
### Javascript:
```Javascript
var maxSubArray = function(nums) {

View File

@ -112,8 +112,8 @@ public:
};
```
* 时间复杂度$O(n\log n)$ 有一个快排
* 空间复杂度$O(1)$我没有算result数组返回值所需容器占的空间
* 时间复杂度O(nlog n) 有一个快排
* 空间复杂度O(n)有一个快排最差情况(倒序)需要n次递归调用因此确实需要O(n)的栈空间
## 总结

View File

@ -347,7 +347,35 @@ var uniquePaths = function(m, n) {
};
```
### TypeScript
```typescript
function uniquePaths(m: number, n: number): number {
/**
dp[i][j]: 到达(i, j)的路径数
dp[0][*]: 1;
dp[*][0]: 1;
...
dp[i][j]: dp[i - 1][j] + dp[i][j - 1];
*/
const dp: number[][] = new Array(m).fill(0).map(_ => []);
for (let i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (let i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
```
### C
```c
//初始化dp数组
int **initDP(int m, int n) {

View File

@ -352,7 +352,38 @@ var uniquePathsWithObstacles = function(obstacleGrid) {
};
```
C
### TypeScript
```typescript
function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
/**
dp[i][j]: 到达(i, j)的路径数
dp[0][*]: 用u表示第一个障碍物下标则u之前为1u之后含u为0
dp[*][0]: 同上
...
dp[i][j]: obstacleGrid[i][j] === 1 ? 0 : dp[i-1][j] + dp[i][j-1];
*/
const m: number = obstacleGrid.length;
const n: number = obstacleGrid[0].length;
const dp: number[][] = new Array(m).fill(0).map(_ => new Array(n).fill(0));
for (let i = 0; i < m && obstacleGrid[i][0] === 0; i++) {
dp[i][0] = 1;
}
for (let i = 0; i < n && obstacleGrid[0][i] === 0; i++) {
dp[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (obstacleGrid[i][j] === 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
```
### C
```c
//初始化dp数组
int **initDP(int m, int n, int** obstacleGrid) {

View File

@ -308,7 +308,58 @@ var climbStairs = function(n) {
};
```
TypeScript
> 爬2阶
```typescript
function climbStairs(n: number): number {
/**
dp[i]: i阶楼梯的方法种数
dp[1]: 1;
dp[2]: 2;
...
dp[i]: dp[i - 1] + dp[i - 2];
*/
const dp: number[] = [];
dp[1] = 1;
dp[2] = 2;
for (let i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
};
```
> 爬m阶
```typescript
function climbStairs(n: number): number {
/**
一次可以爬m阶
dp[i]: i阶楼梯的方法种数
dp[1]: 1;
dp[2]: 2;
dp[3]: dp[2] + dp[1];
...
dp[i]: dp[i - 1] + dp[i - 2] + ... + dp[max(i - m, 1)]; 从i-1加到max(i-m, 1)
*/
const m: number = 2; // 本题m为2
const dp: number[] = new Array(n + 1).fill(0);
dp[1] = 1;
dp[2] = 2;
for (let i = 3; i <= n; i++) {
const end: number = Math.max(i - m, 1);
for (let j = i - 1; j >= end; j--) {
dp[i] += dp[j];
}
}
return dp[n];
};
```
### C
```c
int climbStairs(int n){
//若n<=2返回n

View File

@ -199,6 +199,28 @@ var climbStairs = function(n) {
};
```
TypeScript
```typescript
function climbStairs(n: number): number {
const m: number = 2; // 本题m为2
const dp: number[] = new Array(n + 1).fill(0);
dp[0] = 1;
// 遍历背包
for (let i = 1; i <= n; i++) {
// 遍历物品
for (let j = 1; j <= m; j++) {
if (j <= i) {
dp[i] += dp[i - j];
}
}
}
return dp[n];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -27,7 +27,7 @@
也可以直接看我的B站视频[带你学透回溯算法-组合问题对应力扣题目77.组合)](https://www.bilibili.com/video/BV1ti4y1L7cv#reply3733925949)
# 思路
## 思路
本题这是回溯法的经典题目。
@ -232,7 +232,7 @@ void backtracking(参数) {
**对比一下本题的代码,是不是发现有点像!** 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。
# 总结
## 总结
组合问题是回溯法解决的经典问题我们开始的时候给大家列举一个很形象的例子就是n为100k为50的话直接想法就需要50层for循环。
@ -242,7 +242,7 @@ void backtracking(参数) {
接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。
# 剪枝优化
## 剪枝优化
我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。
@ -324,7 +324,7 @@ public:
};
```
# 剪枝总结
## 剪枝总结
本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。
@ -334,10 +334,10 @@ public:
# 其他语言版本
## 其他语言版本
## Java
### Java
```java
class Solution {
List<List<Integer>> result = new ArrayList<>();
@ -366,6 +366,8 @@ class Solution {
}
```
### Python
Python2:
```python
class Solution(object):
@ -395,7 +397,6 @@ class Solution(object):
return result
```
## Python
```python
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
@ -432,7 +433,7 @@ class Solution:
```
## javascript
### javascript
剪枝:
```javascript
@ -456,7 +457,7 @@ const combineHelper = (n, k, startIndex) => {
}
```
## TypeScript
### TypeScript
```typescript
function combine(n: number, k: number): number[][] {
@ -479,7 +480,7 @@ function combine(n: number, k: number): number[][] {
## Go
### Go
```Go
var res [][]int
func combine(n int, k int) [][]int {
@ -534,7 +535,7 @@ func backtrack(n,k,start int,track []int){
}
```
## C
### C
```c
int* path;
int pathTop;
@ -642,7 +643,7 @@ int** combine(int n, int k, int* returnSize, int** returnColumnSizes){
}
```
## Swift
### Swift
```swift
func combine(_ n: Int, _ k: Int) -> [[Int]] {

View File

@ -227,7 +227,33 @@ const numTrees =(n) => {
};
```
C:
TypeScript
```typescript
function numTrees(n: number): number {
/**
dp[i]: i个节点对应的种树
dp[0]: -1; 无意义;
dp[1]: 1;
...
dp[i]: 2 * dp[i - 1] +
(dp[1] * dp[i - 2] + dp[2] * dp[i - 3] + ... + dp[i - 2] * dp[1]); 从1加到i-2
*/
const dp: number[] = [];
dp[0] = -1; // 表示无意义
dp[1] = 1;
for (let i = 2; i <= n; i++) {
dp[i] = 2 * dp[i - 1];
for (let j = 1, end = i - 1; j < end; j++) {
dp[i] += dp[j] * dp[end - j];
}
}
return dp[n];
};
```
### C
```c
//开辟dp数组
int *initDP(int n) {

View File

@ -238,7 +238,7 @@ public:
};
```
# 总结
## 总结
这次我们又深度剖析了一道二叉树的“简单题”大家会发现真正的把题目搞清楚其实并不简单leetcode上accept了和真正掌握了还是有距离的。
@ -248,7 +248,7 @@ public:
如果已经做过这道题目的同学,读完文章可以再去看看这道题目,思考一下,会有不一样的发现!
# 相关题目推荐
## 相关题目推荐
这两道题目基本和本题是一样的只要稍加修改就可以AC。

View File

@ -377,22 +377,22 @@ class solution {
```java
class solution {
public list<list<integer>> pathsum(treenode root, int targetsum) {
list<list<integer>> res = new arraylist<>();
public List<List<Integer>> pathsum(TreeNode root, int targetsum) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) return res; // 非空判断
list<integer> path = new linkedlist<>();
List<Integer> path = new LinkedList<>();
preorderdfs(root, targetsum, res, path);
return res;
}
public void preorderdfs(treenode root, int targetsum, list<list<integer>> res, list<integer> path) {
public void preorderdfs(TreeNode root, int targetsum, List<List<Integer>> res, List<Integer> path) {
path.add(root.val);
// 遇到了叶子节点
if (root.left == null && root.right == null) {
// 找到了和为 targetsum 的路径
if (targetsum - root.val == 0) {
res.add(new arraylist<>(path));
res.add(new ArrayList<>(path));
}
return; // 如果和不为 targetsum返回
}

View File

@ -213,6 +213,25 @@ func findMax(num1 int ,num2 int) int{
}
```
### Rust
```rust
pub fn candy(ratings: Vec<i32>) -> i32 {
let mut candies = vec![1i32; ratings.len()];
for i in 1..ratings.len() {
if ratings[i - 1] < ratings[i] {
candies[i] = candies[i - 1] + 1;
}
}
for i in (0..ratings.len()-1).rev() {
if ratings[i] > ratings[i + 1] {
candies[i] = candies[i].max(candies[i + 1] + 1);
}
}
candies.iter().sum()
}
```
### Javascript:
```Javascript
var candy = function(ratings) {

View File

@ -345,6 +345,48 @@ const wordBreak = (s, wordDict) => {
}
```
TypeScript
> 动态规划
```typescript
function wordBreak(s: string, wordDict: string[]): boolean {
const dp: boolean[] = new Array(s.length + 1).fill(false);
dp[0] = true;
for (let i = 1; i <= s.length; i++) {
for (let j = 0; j < i; j++) {
const tempStr: string = s.slice(j, i);
if (wordDict.includes(tempStr) && dp[j] === true) {
dp[i] = true;
break;
}
}
}
return dp[s.length];
};
```
> 记忆化回溯
```typescript
function wordBreak(s: string, wordDict: string[]): boolean {
// 只需要记忆结果为false的情况
const memory: boolean[] = [];
return backTracking(s, wordDict, 0, memory);
function backTracking(s: string, wordDict: string[], startIndex: number, memory: boolean[]): boolean {
if (startIndex >= s.length) return true;
if (memory[startIndex] === false) return false;
for (let i = startIndex + 1, length = s.length; i <= length; i++) {
const str: string = s.slice(startIndex, i);
if (wordDict.includes(str) && backTracking(s, wordDict, i, memory))
return true;
}
memory[startIndex] = false;
return false;
}
};
```
-----------------------

View File

@ -355,5 +355,24 @@ var numSquares2 = function(n) {
};
```
TypeScript
```typescript
function numSquares(n: number): number {
const goodsNum: number = Math.floor(Math.sqrt(n));
const dp: number[] = new Array(n + 1).fill(Infinity);
dp[0] = 0;
for (let i = 1; i <= goodsNum; i++) {
const tempVal: number = i * i;
for (let j = tempVal; j <= n; j++) {
dp[j] = Math.min(dp[j], dp[j - tempVal] + 1);
}
}
return dp[n];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -201,6 +201,23 @@ func max(x, y int) int {
}
```
Rust:
```rust
pub fn length_of_lis(nums: Vec<i32>) -> i32 {
let mut dp = vec![1; nums.len() + 1];
let mut result = 1;
for i in 1..nums.len() {
for j in 0..i {
if nums[j] < nums[i] {
dp[i] = dp[i].max(dp[j] + 1);
}
result = result.max(dp[i]);
}
}
result
}
```
Javascript
```javascript
const lengthOfLIS = (nums) => {

View File

@ -302,6 +302,24 @@ func min(a, b int) int {
```
Rust:
```rust
pub fn coin_change(coins: Vec<i32>, amount: i32) -> i32 {
let amount = amount as usize;
let mut dp = vec![i32::MAX; amount + 1];
dp[0] = 0;
for i in 0..coins.len() {
for j in coins[i] as usize..=amount {
if dp[j - coins[i] as usize] != i32::MAX {
dp[j] = dp[j].min(dp[j - coins[i] as usize] + 1);
}
}
}
if dp[amount] == i32::MAX { -1 } else { dp[amount] }
}
```
Javascript
```javascript
const coinChange = (coins, amount) => {
@ -322,7 +340,21 @@ const coinChange = (coins, amount) => {
}
```
TypeScript
```typescript
function coinChange(coins: number[], amount: number): number {
const dp: number[] = new Array(amount + 1).fill(Infinity);
dp[0] = 0;
for (let i = 0; i < coins.length; i++) {
for (let j = coins[i]; j <= amount; j++) {
if (dp[j - coins[i]] === Infinity) continue;
dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
}
}
return dp[amount] === Infinity ? -1 : dp[amount];
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -274,7 +274,33 @@ var integerBreak = function(n) {
};
```
C:
### TypeScript
```typescript
function integerBreak(n: number): number {
/**
dp[i]: i对应的最大乘积
dp[2]: 1;
...
dp[i]: max(
1 * dp[i - 1], 1 * (i - 1),
2 * dp[i - 2], 2 * (i - 2),
..., (i - 2) * dp[2], (i - 2) * 2
);
*/
const dp: number[] = new Array(n + 1).fill(0);
dp[2] = 1;
for (let i = 3; i <= n; i++) {
for (let j = 1; j <= i - 2; j++) {
dp[i] = Math.max(dp[i], j * dp[i - j], j * (i - j));
}
}
return dp[n];
};
```
### C
```c
//初始化DP数组
int *initDP(int num) {

View File

@ -221,7 +221,27 @@ const combinationSum4 = (nums, target) => {
};
```
TypeScript
```typescript
function combinationSum4(nums: number[], target: number): number {
const dp: number[] = new Array(target + 1).fill(0);
dp[0] = 1;
// 遍历背包
for (let i = 1; i <= target; i++) {
// 遍历物品
for (let j = 0, length = nums.length; j < length; j++) {
if (i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
};
```
Rust
```Rust
impl Solution {
pub fn combination_sum4(nums: Vec<i32>, target: i32) -> i32 {

View File

@ -114,23 +114,25 @@ Java
```Java
class Solution {
public boolean canConstruct(String ransomNote, String magazine) {
//记录杂志字符串出现的次数
int[] arr = new int[26];
int temp;
for (int i = 0; i < magazine.length(); i++) {
temp = magazine.charAt(i) - 'a';
arr[temp]++;
// 定义一个哈希映射数组
int[] record = new int[26];
// 遍历
for(char c : magazine.toCharArray()){
record[c - 'a'] += 1;
}
for (int i = 0; i < ransomNote.length(); i++) {
temp = ransomNote.charAt(i) - 'a';
//对于金信中的每一个字符都在数组中查找
//找到相应位减一否则找不到返回false
if (arr[temp] > 0) {
arr[temp]--;
} else {
for(char c : ransomNote.toCharArray()){
record[c - 'a'] -= 1;
}
// 如果数组中存在负数说明ransomNote字符串总存在magazine中没有的字符
for(int i : record){
if(i < 0){
return false;
}
}
return true;
}
}

View File

@ -416,6 +416,7 @@ var canPartition = function(nums) {
};
```
C:
二维dp
```c
@ -517,6 +518,62 @@ bool canPartition(int* nums, int numsSize){
}
```
TypeScript:
> 一维数组,简洁
```typescript
function canPartition(nums: number[]): boolean {
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (sum % 2 === 1) return false;
const bagSize: number = sum / 2;
const goodsNum: number = nums.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = bagSize; j >= nums[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
return dp[bagSize] === bagSize;
};
```
> 二维数组,易懂
```typescript
function canPartition(nums: number[]): boolean {
/**
weightArr = nums;
valueArr = nums;
bagSize = sum / 2; (sum为nums各元素总和);
按照0-1背包处理
*/
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (sum % 2 === 1) return false;
const bagSize: number = sum / 2;
const weightArr: number[] = nums;
const valueArr: number[] = nums;
const goodsNum: number = weightArr.length;
const dp: number[][] = new Array(goodsNum)
.fill(0)
.map(_ => new Array(bagSize + 1).fill(0));
for (let i = weightArr[0]; i <= bagSize; i++) {
dp[0][i] = valueArr[0];
}
for (let i = 1; i < goodsNum; i++) {
for (let j = 0; j <= bagSize; j++) {
if (j < weightArr[i]) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weightArr[i]] + valueArr[i]);
}
}
}
return dp[goodsNum - 1][bagSize] === bagSize;
};
```
-----------------------

View File

@ -93,7 +93,7 @@ public:
};
```
* 时间复杂度O(nlog n) ,有一个快排
* 空间复杂度O(1)
* 空间复杂度O(n),有一个快排,最差情况(倒序)时需要n次递归调用。因此确实需要O(n)的栈空间
大家此时会发现如此复杂的一个问题,代码实现却这么简单!

View File

@ -105,8 +105,8 @@ public:
};
```
* 时间复杂度$O(n\log n)$因为有一个快排
* 空间复杂度$O(1)$
* 时间复杂度O(nlog n)因为有一个快排
* 空间复杂度O(1)有一个快排最差情况(倒序)需要n次递归调用因此确实需要O(n)的栈空间
可以看出代码并不复杂

View File

@ -191,6 +191,26 @@ func findContentChildren(g []int, s []int) int {
}
```
### Rust
```rust
pub fn find_content_children(children: Vec<i32>, cookie: Vec<i32>) -> i32 {
let mut children = children;
let mut cookies = cookie;
children.sort();
cookies.sort();
let (mut child, mut cookie) = (0usize, 0usize);
while child < children.len() && cookie < cookies.len() {
// 优先选择最小饼干喂饱孩子
if children[child] <= cookies[cookie] {
child += 1;
}
cookie += 1
}
child as i32
}
```
### Javascript
```js
var findContentChildren = function(g, s) {

View File

@ -323,6 +323,129 @@ const findMaxForm = (strs, m, n) => {
};
```
TypeScript
> 滚动数组,二维数组法
```typescript
type BinaryInfo = { numOfZero: number, numOfOne: number };
function findMaxForm(strs: string[], m: number, n: number): number {
const goodsNum: number = strs.length;
const dp: number[][] = new Array(m + 1).fill(0)
.map(_ => new Array(n + 1).fill(0));
for (let i = 0; i < goodsNum; i++) {
const { numOfZero, numOfOne } = countBinary(strs[i]);
for (let j = m; j >= numOfZero; j--) {
for (let k = n; k >= numOfOne; k--) {
dp[j][k] = Math.max(dp[j][k], dp[j - numOfZero][k - numOfOne] + 1);
}
}
}
return dp[m][n];
};
function countBinary(str: string): BinaryInfo {
let numOfZero: number = 0,
numOfOne: number = 0;
for (let s of str) {
if (s === '0') {
numOfZero++;
} else {
numOfOne++;
}
}
return { numOfZero, numOfOne };
}
```
> 传统背包,三维数组法
```typescript
type BinaryInfo = { numOfZero: number, numOfOne: number };
function findMaxForm(strs: string[], m: number, n: number): number {
/**
dp[i][j][k]: 前i个物品中, 背包的0容量为j, 1容量为k, 最多能放的物品数量
*/
const goodsNum: number = strs.length;
const dp: number[][][] = new Array(goodsNum).fill(0)
.map(_ => new Array(m + 1)
.fill(0)
.map(_ => new Array(n + 1).fill(0))
);
const { numOfZero, numOfOne } = countBinary(strs[0]);
for (let i = numOfZero; i <= m; i++) {
for (let j = numOfOne; j <= n; j++) {
dp[0][i][j] = 1;
}
}
for (let i = 1; i < goodsNum; i++) {
const { numOfZero, numOfOne } = countBinary(strs[i]);
for (let j = 0; j <= m; j++) {
for (let k = 0; k <= n; k++) {
if (j < numOfZero || k < numOfOne) {
dp[i][j][k] = dp[i - 1][j][k];
} else {
dp[i][j][k] = Math.max(dp[i - 1][j][k], dp[i - 1][j - numOfZero][k - numOfOne] + 1);
}
}
}
}
return dp[dp.length - 1][m][n];
};
function countBinary(str: string): BinaryInfo {
let numOfZero: number = 0,
numOfOne: number = 0;
for (let s of str) {
if (s === '0') {
numOfZero++;
} else {
numOfOne++;
}
}
return { numOfZero, numOfOne };
}
```
> 回溯法(会超时)
```typescript
function findMaxForm(strs: string[], m: number, n: number): number {
/**
思路暴力枚举strs的所有子集记录符合条件子集的最大长度
*/
let resMax: number = 0;
backTrack(strs, m, n, 0, []);
return resMax;
function backTrack(
strs: string[], m: number, n: number,
startIndex: number, route: string[]
): void {
if (startIndex === strs.length) return;
for (let i = startIndex, length = strs.length; i < length; i++) {
route.push(strs[i]);
if (isValidSubSet(route, m, n)) {
resMax = Math.max(resMax, route.length);
backTrack(strs, m, n, i + 1, route);
}
route.pop();
}
}
};
function isValidSubSet(strs: string[], m: number, n: number): boolean {
let zeroNum: number = 0,
oneNum: number = 0;
strs.forEach(str => {
for (let s of str) {
if (s === '0') {
zeroNum++;
} else {
oneNum++;
}
}
});
return zeroNum <= m && oneNum <= n;
}
```
-----------------------

View File

@ -351,6 +351,25 @@ const findTargetSumWays = (nums, target) => {
};
```
TypeScript
```typescript
function findTargetSumWays(nums: number[], target: number): number {
const sum: number = nums.reduce((pre, cur) => pre + cur);
if (Math.abs(target) > sum) return 0;
if ((target + sum) % 2 === 1) return 0;
const bagSize: number = (target + sum) / 2;
const dp: number[] = new Array(bagSize + 1).fill(0);
dp[0] = 1;
for (let i = 0; i < nums.length; i++) {
for (let j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
};
```
-----------------------

View File

@ -244,6 +244,39 @@ class Solution:
```
Go
> 未精简版本
```go
func nextGreaterElement(nums1 []int, nums2 []int) []int {
res := make([]int, len(nums1))
for i := range res { res[i] = -1 }
m := make(map[int]int, len(nums1))
for k, v := range nums1 { m[v] = k }
stack := []int{0}
for i := 1; i < len(nums2); i++ {
top := stack[len(stack)-1]
if nums2[i] < nums2[top] {
stack = append(stack, i)
} else if nums2[i] == nums2[top] {
stack = append(stack, i)
} else {
for len(stack) != 0 && nums2[i] > nums2[top] {
if v, ok := m[nums2[top]]; ok {
res[v] = nums2[i]
}
stack = stack[:len(stack)-1]
if len(stack) != 0 {
top = stack[len(stack)-1]
}
}
stack = append(stack, i)
}
}
return res
}
```
> 精简版本
```go
func nextGreaterElement(nums1 []int, nums2 []int) []int {
res := make([]int, len(nums1))

View File

@ -245,7 +245,29 @@ var fib = function(n) {
};
```
TypeScript
```typescript
function fib(n: number): number {
/**
dp[i]: 第i个斐波那契数
dp[0]: 0;
dp[1]1
...
dp[i] = dp[i - 1] + dp[i - 2];
*/
const dp: number[] = [];
dp[0] = 0;
dp[1] = 1;
for (let i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
};
```
### C
动态规划:
```c
int fib(int n){

View File

@ -242,6 +242,22 @@ func change(amount int, coins []int) int {
}
```
Rust:
```rust
pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
let amount = amount as usize;
let coins = coins.iter().map(|&c|c as usize).collect::<Vec<usize>>();
let mut dp = vec![0usize; amount + 1];
dp[0] = 1;
for i in 0..coins.len() {
for j in coins[i]..=amount {
dp[j] += dp[j - coins[i]];
}
}
dp[amount] as i32
}
```
Javascript
```javascript
const change = (amount, coins) => {
@ -258,6 +274,21 @@ const change = (amount, coins) => {
}
```
TypeScript
```typescript
function change(amount: number, coins: number[]): number {
const dp: number[] = new Array(amount + 1).fill(0);
dp[0] = 1;
for (let i = 0, length = coins.length; i < length; i++) {
for (let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
};
```
-----------------------

View File

@ -218,6 +218,7 @@ class Solution:
return result
```
> 贪心法:
```python
class Solution:
@ -276,6 +277,24 @@ func findLengthOfLCIS(nums []int) int {
}
```
Rust:
```rust
pub fn find_length_of_lcis(nums: Vec<i32>) -> i32 {
if nums.is_empty() {
return 0;
}
let mut result = 1;
let mut dp = vec![1; nums.len()];
for i in 1..nums.len() {
if nums[i - 1] < nums[i] {
dp[i] = dp[i - 1] + 1;
result = result.max(dp[i]);
}
}
result
}
```
Javascript
> 动态规划:

View File

@ -279,7 +279,7 @@ class Solution:
root.right = self.insertIntoBST(root.right, val)
# 返回更新后的以当前root为根节点的新树
return roo
return root
```
**递归法** - 无返回值

View File

@ -34,7 +34,7 @@
那么单调栈的原理是什么呢为什么时间复杂度是O(n)就可以找到每一个元素的右边第一个比它大的元素位置呢?
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素的元素,优点是只需要遍历一次。
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素的元素,优点是只需要遍历一次。
在使用单调栈的时候首先要明确如下几点:
@ -233,7 +233,7 @@ class Solution {
}
```
Python
``` Python3
```python
class Solution:
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
answer = [0]*len(temperatures)
@ -277,8 +277,36 @@ func dailyTemperatures(t []int) []int {
}
```
> 单调栈法
> 单调栈法(未精简版本)
```go
func dailyTemperatures(temperatures []int) []int {
res := make([]int, len(temperatures))
// 初始化栈顶元素为第一个下标索引0
stack := []int{0}
for i := 1; i < len(temperatures); i++ {
top := stack[len(stack)-1]
if temperatures[i] < temperatures[top] {
stack = append(stack, i)
} else if temperatures[i] == temperatures[top] {
stack = append(stack, i)
} else {
for len(stack) != 0 && temperatures[i] > temperatures[top] {
res[top] = i - top
stack = stack[:len(stack)-1]
if len(stack) != 0 {
top = stack[len(stack)-1]
}
}
stack = append(stack, i)
}
}
return res
}
```
> 单调栈法(精简版本)
```go
// 单调递减栈
func dailyTemperatures(num []int) []int {

View File

@ -266,7 +266,30 @@ var minCostClimbingStairs = function(cost) {
};
```
### TypeScript
```typescript
function minCostClimbingStairs(cost: number[]): number {
/**
dp[i]: 走到第i阶需要花费的最少金钱
dp[0]: cost[0];
dp[1]: cost[1];
...
dp[i]: min(dp[i - 1], dp[i - 2]) + cost[i];
*/
const dp: number[] = [];
const length: number = cost.length;
dp[0] = cost[0];
dp[1] = cost[1];
for (let i = 2; i <= length; i++) {
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
}
return Math.min(dp[length - 1], dp[length - 2]);
};
```
### C
```c
int minCostClimbingStairs(int* cost, int costSize){
//开辟dp数组大小为costSize

View File

@ -209,6 +209,22 @@ var largestSumAfterKNegations = function(nums, k) {
return a + b
})
};
// 版本二 (优化: 一次遍历)
var largestSumAfterKNegations = function(nums, k) {
nums.sort((a, b) => Math.abs(b) - Math.abs(a)); // 排序
let sum = 0;
for(let i = 0; i < nums.length; i++) {
if(nums[i] < 0 && k-- > 0) { // 负数取反k 数量足够时)
nums[i] = -nums[i];
}
sum += nums[i]; // 求和
}
if(k % 2 > 0) { // k 有多余的k若消耗完则应为 -1
sum -= 2 * nums[nums.length - 1]; // 减去两倍的最小值(因为之前加过一次)
}
return sum;
};
```

View File

@ -111,7 +111,6 @@ class Solution:
Golang:
```go
func maxUncrossedLines(A []int, B []int) int {
m, n := len(A), len(B)
dp := make([][]int, m+1)
@ -140,7 +139,26 @@ func max(a, b int) int {
}
```
Rust:
```rust
pub fn max_uncrossed_lines(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 {
let (n, m) = (nums1.len(), nums2.len());
let mut last = vec![0; m + 1]; // 记录滚动数组
let mut dp = vec![0; m + 1];
for i in 1..=n {
dp.swap_with_slice(&mut last);
for j in 1..=m {
if nums1[i - 1] == nums2[j - 1] {
dp[j] = last[j - 1] + 1;
} else {
dp[j] = last[j].max(dp[j - 1]);
}
}
}
dp[m]
}
```
JavaScript

View File

@ -277,5 +277,26 @@ var lastStoneWeightII = function (stones) {
};
```
TypeScript
```typescript
function lastStoneWeightII(stones: number[]): number {
const sum: number = stones.reduce((pre, cur) => pre + cur);
const bagSize: number = Math.floor(sum / 2);
const weightArr: number[] = stones;
const valueArr: number[] = stones;
const goodsNum: number = weightArr.length;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = bagSize; j >= weightArr[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weightArr[i]] + valueArr[i]);
}
}
return sum - dp[bagSize] * 2;
};
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -193,6 +193,28 @@ func max(a,b int)int {
}
return b
}
```
Rust:
```rust
pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
let (n, m) = (text1.len(), text2.len());
let (s1, s2) = (text1.as_bytes(), text2.as_bytes());
let mut dp = vec![0; m + 1];
let mut last = vec![0; m + 1];
for i in 1..=n {
dp.swap_with_slice(&mut last);
for j in 1..=m {
dp[j] = if s1[i - 1] == s2[j - 1] {
last[j - 1] + 1
} else {
last[j].max(dp[j - 1])
};
}
}
dp[m]
}
```
Javascript

View File

@ -432,6 +432,7 @@ function test () {
test();
```
### C
```c
#include <stdio.h>
@ -478,5 +479,48 @@ int main(int argc, char* argv[]) {
}
```
### TypeScript
```typescript
function testWeightBagProblem(
weight: number[],
value: number[],
size: number
): number {
/**
* dp[i][j]: 前i个物品背包容量为j能获得的最大价值
* dp[0][*]: u=weight[0],u之前为0u之后含u为value[0]
* dp[*][0]: 0
* ...
* dp[i][j]: max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i]);
*/
const goodsNum: number = weight.length;
const dp: number[][] = new Array(goodsNum)
.fill(0)
.map((_) => new Array(size + 1).fill(0));
for (let i = weight[0]; i <= size; i++) {
dp[0][i] = value[0];
}
for (let i = 1; i < goodsNum; i++) {
for (let j = 1; j <= size; j++) {
if (j < weight[i]) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
}
return dp[goodsNum - 1][size];
}
// test
const weight = [1, 3, 4];
const value = [15, 20, 30];
const size = 4;
console.log(testWeightBagProblem(weight, value, size));
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -137,6 +137,8 @@ dp[1] = dp[1 - weight[0]] + value[0] = 15
因为一维dp的写法背包容量一定是要倒序遍历原因上面已经讲了如果遍历背包容量放在上一层那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。
这里如果读不懂就在回想一下dp[j]的定义或者就把两个for循环顺序颠倒一下试试
**所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的**,这一点大家一定要注意。
@ -349,6 +351,31 @@ int main(int argc, char** argv) {
}
```
### TypeScript
```typescript
function testWeightBagProblem(
weight: number[],
value: number[],
size: number
): number {
const goodsNum: number = weight.length;
const dp: number[] = new Array(size + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = size; j >= weight[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
return dp[size];
}
const weight = [1, 3, 4];
const value = [15, 20, 30];
const size = 4;
console.log(testWeightBagProblem(weight, value, size));
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -340,6 +340,27 @@ function test_completePack2() {
}
```
TypeScript
```typescript
// 先遍历物品,再遍历背包容量
function test_CompletePack(): void {
const weight: number[] = [1, 3, 4];
const value: number[] = [15, 20, 30];
const bagSize: number = 4;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < weight.length; i++) {
for (let j = weight[i]; j <= bagSize; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
console.log(dp);
}
test_CompletePack();
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -1,41 +0,0 @@
# 双指针,不计算链表长度
设置指向headA和headB的指针pa、pb分别遍历两个链表每次循环同时更新pa和pb。
* 当链表A遍历完之后即pa为空时将pa指向headB
* 当链表B遍历完之后即pa为空时将pb指向headA
* 当pa与pb相等时即指向同一个节点该节点即为相交起始节点。
* 若链表不相交则pa、pb同时为空时退出循环即如果链表不相交pa与pb在遍历过全部节点后同时指向结尾空节点此时退出循环返回空。
# 证明思路
设链表A不相交部分长度为a链表B不相交部分长度为b两个链表相交部分长度为c。<br>
在pa指向链表A时即pa为空之前pa经过链表A不相交部分和相交部分走过的长度为a+c<br>
pa指向链表B后在移动相交节点之前经过链表B不相交部分走过的长度为b总合为a+c+b。<br>
同理pb走过长度的总合为b+c+a。二者相等即pa与pb可同时到达相交起始节点。 <br>
该方法可避免计算具体链表长度。
```cpp
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
//链表为空时,返回空指针
if(headA == nullptr || headB == nullptr) return nullptr;
ListNode* pa = headA;
ListNode* pb = headB;
//pa与pb在遍历过全部节点后,同时指向结尾空节点时退出循环
while(pa != nullptr || pb != nullptr){
//pa为空时将pa指向headB
if(pa == nullptr){
pa = headB;
}
//pa为空时将pb指向headA
if(pb == nullptr){
pb = headA;
}
//pa与pb相等时返回相交起始节点
if(pa == pb){
return pa;
}
pa = pa->next;
pb = pb->next;
}
return nullptr;
}
};
```