Merge branch 'youngyangyang04:master' into master

This commit is contained in:
KailokFung
2021-06-29 16:45:13 +08:00
committed by GitHub
6 changed files with 165 additions and 119 deletions

View File

@ -313,63 +313,47 @@ func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
}
```
JavaScript版本
> 递归
JavaScript版本
1. 使用递归的方法
```javascript
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} p
* @param {TreeNode} q
* @return {TreeNode}
*/
var lowestCommonAncestor = function(root, p, q) {
if(root.val > p.val && root.val > q.val)
return lowestCommonAncestor(root.left, p , q);
else if(root.val < p.val && root.val < q.val)
return lowestCommonAncestor(root.right, p , q);
return root;
};
```
> 迭代
```javascript
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} p
* @param {TreeNode} q
* @return {TreeNode}
*/
var lowestCommonAncestor = function(root, p, q) {
while(1) {
if(root.val > p.val && root.val > q.val)
root = root.left;
else if(root.val < p.val && root.val < q.val)
root = root.right;
else
break;
// 使用递归的方法
// 1. 使用给定的递归函数lowestCommonAncestor
// 2. 确定递归终止条件
if(root === null) {
return root;
}
if(root.val>p.val&&root.val>q.val) {
// 向左子树查询
let left = lowestCommonAncestor(root.left,p,q);
return left !== null&&left;
}
if(root.val<p.val&&root.val<q.val) {
// 向右子树查询
let right = lowestCommonAncestor(root.right,p,q);
return right !== null&&right;
}
return root;
};
```
2. 使用迭代的方法
```javascript
var lowestCommonAncestor = function(root, p, q) {
// 使用迭代的方法
while(root) {
if(root.val>p.val&&root.val>q.val) {
root = root.left;
}else if(root.val<p.val&&root.val<q.val) {
root = root.right;
}else {
return root;
}
}
return null;
};
```
-----------------------

View File

@ -311,35 +311,34 @@ func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
}
```
JavaScript版本
JavaScript版本
```javascript
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} p
* @param {TreeNode} q
* @return {TreeNode}
*/
var lowestCommonAncestor = function(root, p, q) {
if(root === p || root === q || root === null)
return root;
let left = lowestCommonAncestor(root.left, p , q);
let right = lowestCommonAncestor(root.right, p, q);
if(left && right)
return root;
if(!left)
return right;
return left;
// 使用递归的方法
// 需要从下到上,所以使用后序遍历
// 1. 确定递归的函数
const travelTree = function(root,p,q) {
// 2. 确定递归终止条件
if(root === null || root === p||root === q) {
return root;
}
// 3. 确定递归单层逻辑
let left = travelTree(root.left,p,q);
let right = travelTree(root.right,p,q);
if(left !== null&&right !== null) {
return root;
}
if(left ===null) {
return right;
}
return left;
}
return travelTree(root,p,q);
};
```
-----------------------
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
* B站视频[代码随想录](https://space.bilibili.com/525438321)

View File

@ -214,8 +214,26 @@ class Solution:
return dp[n]
```
Python3:
```python
class Solution:
def numSquares(self, n: int) -> int:
# 初始化
# 组成和的完全平方数的最多个数就是只用1构成
# 因此dp[i] = i
dp = [i for i in range(n + 1)]
# dp[0] = 0 无意义,只是为了方便记录特殊情况:
# n本身就是完全平方数dp[n] = min(dp[n], dp[n - n] + 1) = 1
for i in range(1, n): # 遍历物品
if i * i > n:
break
num = i * i
for j in range(num, n + 1): # 遍历背包
dp[j] = min(dp[j], dp[j - num] + 1)
return dp[n]
```
Go
```go

View File

@ -523,52 +523,76 @@ func traversal(root *TreeNode,result *[]int,pre *TreeNode){//遍历统计
}
```
JavaScript版本
JavaScript版本
使用额外空间map的方法
```javascript
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var findMode = function (root) {
let maxCount = 0;
let curCount = 0;
let pre = null;
let res = [];
const inOrder = (root) => {
if (root === null)
return;
inOrder(root.left);
if (pre === null)
curCount = 1;
else if (pre.val === root.val)
curCount++;
else
curCount = 1;
pre = root;
if (curCount === maxCount)
res.push(root.val);
if (curCount > maxCount) {
maxCount = curCount;
res.splice(0, res.length);
res.push(root.val);
var findMode = function(root) {
// 使用递归中序遍历
let map = new Map();
// 1. 确定递归函数以及函数参数
const traverTree = function(root) {
// 2. 确定递归终止条件
if(root === null) {
return ;
}
inOrder(root.right);
return;
traverTree(root.left);
// 3. 单层递归逻辑
map.set(root.val,map.has(root.val)?map.get(root.val)+1:1);
traverTree(root.right);
}
inOrder(root);
traverTree(root);
//上面把数据都存储到map
//下面开始寻找map里面的
// 定义一个最大出现次数的初始值为root.val的出现次数
let maxCount = map.get(root.val);
// 定义一个存放结果的数组res
let res = [];
for(let [key,value] of map) {
// 如果当前值等于最大出现次数就直接在res增加该值
if(value === maxCount) {
res.push(key);
}
// 如果value的值大于原本的maxCount就清空res的所有值因为找到了更大的
if(value>maxCount) {
res = [];
maxCount = value;
res.push(key);
}
}
return res;
};
```
不使用额外空间,利用二叉树性质,中序遍历(有序)
```javascript
var findMode = function(root) {
// 不使用额外空间,使用中序遍历,设置出现最大次数初始值为1
let count = 0,maxCount = 1;
let pre = root,res = [];
// 1.确定递归函数及函数参数
const travelTree = function(cur) {
// 2. 确定递归终止条件
if(cur === null) {
return ;
}
travelTree(cur.left);
// 3. 单层递归逻辑
if(pre.val === cur.val) {
count++;
}else {
count = 1;
}
pre = cur;
if(count === maxCount) {
res.push(cur.val);
}
if(count > maxCount) {
res = [];
maxCount = count;
res.push(cur.val);
}
travelTree(cur.right);
}
travelTree(root);
return res;
};
```

View File

@ -118,6 +118,27 @@ class Solution {
}
```
```python
# 方法一:可以使用切片方法
class Solution:
def reverseLeftWords(self, s: str, n: int) -> str:
return s[n:] + s[0:n]
# 方法二:也可以使用上文描述的方法,有些面试中不允许使用切片,那就使用上文作者提到的方法
# class Solution:
# def reverseLeftWords(self, s: str, n: int) -> str:
# s = list(s)
# s[0:n] = list(reversed(s[0:n]))
# s[n:] = list(reversed(s[n:]))
# s.reverse()
# return "".join(s)
# 时间复杂度O(n)
# 空间复杂度O(n)python的string为不可变需要开辟同样大小的list空间来修改
```
Go
```go

View File

@ -82,7 +82,7 @@ leetcode上没有纯01背包的问题都是01背包应用方面的题目
那么可以有两个方向推出来dp[i][j]
* 由dp[i - 1][j]推出即背包容量为j里面不放物品i的最大价值此时dp[i][j]就是dp[i - 1][j]
* 由dp[i - 1][j]推出即背包容量为j里面不放物品i的最大价值此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时物品i无法放进背包中所以被背包内的价值依然和前面相同。)
* 由dp[i - 1][j - weight[i]]推出dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值那么dp[i - 1][j - weight[i]] + value[i] 物品i的价值就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);