Merge pull request #1262 from laerpeeK/master

Update 背包理论基础01背包JavaScript代码块
This commit is contained in:
程序员Carl
2022-05-15 14:37:54 +08:00
committed by GitHub

View File

@ -380,28 +380,37 @@ func main() {
### javascript
```js
function testweightbagproblem (wight, value, size) {
const len = wight.length,
dp = array.from({length: len + 1}).map(
() => array(size + 1).fill(0)
);
for(let i = 1; i <= len; i++) {
for(let j = 0; j <= size; j++) {
if(wight[i - 1] <= j) {
dp[i][j] = math.max(
dp[i - 1][j],
value[i - 1] + dp[i - 1][j - wight[i - 1]]
)
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
/**
*
* @param {Number []} weight
* @param {Number []} value
* @param {Number} size
* @returns
*/
// console.table(dp);
function testWeightBagProblem(weight, value, size) {
const len = weight.length,
dp = Array.from({length: len}).map(
() => Array(size + 1)) //JavaScript 数组是引用类型
for(let i = 0; i < len; i++) { //初始化最左一列即背包容量为0时的情况
dp[i][0] = 0;
}
for(let j = 1; j < size+1; j++) { //初始化第0行, 只有一件物品的情况
if(weight[0] <= j) {
dp[0][j] = value[0];
} else {
dp[0][j] = 0;
}
}
for(let i = 1; i < len; i++) { //dp[i][j]由其左上方元素推导得出
for(let j = 1; j < size+1; j++) {
if(j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i]);
}
}
return dp[len][size];
return dp[len-1][size] //满足条件的最大值
}
function testWeightBagProblem2 (wight, value, size) {