mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-10 12:15:58 +08:00
Merge branch 'youngyangyang04:master' into master
This commit is contained in:
@ -808,7 +808,93 @@ func strStr(haystack string, needle string) int {
|
||||
}
|
||||
```
|
||||
|
||||
JavaScript版本
|
||||
|
||||
> 前缀表统一减一
|
||||
|
||||
```javascript
|
||||
/**
|
||||
* @param {string} haystack
|
||||
* @param {string} needle
|
||||
* @return {number}
|
||||
*/
|
||||
var strStr = function (haystack, needle) {
|
||||
if (needle.length === 0)
|
||||
return 0;
|
||||
|
||||
const getNext = (needle) => {
|
||||
let next = [];
|
||||
let j = -1;
|
||||
next.push(j);
|
||||
|
||||
for (let i = 1; i < needle.length; ++i) {
|
||||
while (j >= 0 && needle[i] !== needle[j + 1])
|
||||
j = next[j];
|
||||
if (needle[i] === needle[j + 1])
|
||||
j++;
|
||||
next.push(j);
|
||||
}
|
||||
|
||||
return next;
|
||||
}
|
||||
|
||||
let next = getNext(needle);
|
||||
let j = -1;
|
||||
for (let i = 0; i < haystack.length; ++i) {
|
||||
while (j >= 0 && haystack[i] !== needle[j + 1])
|
||||
j = next[j];
|
||||
if (haystack[i] === needle[j + 1])
|
||||
j++;
|
||||
if (j === needle.length - 1)
|
||||
return (i - needle.length + 1);
|
||||
}
|
||||
|
||||
return -1;
|
||||
};
|
||||
```
|
||||
|
||||
> 前缀表统一不减一
|
||||
|
||||
```javascript
|
||||
/**
|
||||
* @param {string} haystack
|
||||
* @param {string} needle
|
||||
* @return {number}
|
||||
*/
|
||||
var strStr = function (haystack, needle) {
|
||||
if (needle.length === 0)
|
||||
return 0;
|
||||
|
||||
const getNext = (needle) => {
|
||||
let next = [];
|
||||
let j = 0;
|
||||
next.push(j);
|
||||
|
||||
for (let i = 1; i < needle.length; ++i) {
|
||||
while (j > 0 && needle[i] !== needle[j])
|
||||
j = next[j - 1];
|
||||
if (needle[i] === needle[j])
|
||||
j++;
|
||||
next.push(j);
|
||||
}
|
||||
|
||||
return next;
|
||||
}
|
||||
|
||||
let next = getNext(needle);
|
||||
let j = 0;
|
||||
for (let i = 0; i < haystack.length; ++i) {
|
||||
while (j > 0 && haystack[i] !== needle[j])
|
||||
j = next[j - 1];
|
||||
if (haystack[i] === needle[j])
|
||||
j++;
|
||||
if (j === needle.length)
|
||||
return (i - needle.length + 1);
|
||||
}
|
||||
|
||||
return -1;
|
||||
};
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
@ -99,6 +99,24 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public void nextPermutation(int[] nums) {
|
||||
for (int i = nums.length - 1; i >= 0; i--) {
|
||||
for (int j = nums.length - 1; j > i; j--) {
|
||||
if (nums[j] > nums[i]) {
|
||||
// 交换
|
||||
int temp = nums[i];
|
||||
nums[i] = nums[j];
|
||||
nums[j] = temp;
|
||||
// [i + 1, nums.length) 内元素升序排序
|
||||
Arrays.sort(nums, i + 1, nums.length);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
Arrays.sort(nums); // 不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
|
@ -14,7 +14,7 @@
|
||||
如果数组中不存在目标值 target,返回 [-1, -1]。
|
||||
|
||||
进阶:你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
|
||||
|
||||
|
||||
|
||||
示例 1:
|
||||
* 输入:nums = [5,7,7,8,8,10], target = 8
|
||||
@ -173,8 +173,105 @@ private:
|
||||
## Java
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
int[] searchRange(int[] nums, int target) {
|
||||
int leftBorder = getLeftBorder(nums, target);
|
||||
int rightBorder = getRightBorder(nums, target);
|
||||
// 情况一
|
||||
if (leftBorder == -2 || rightBorder == -2) return new int[]{-1, -1};
|
||||
// 情况三
|
||||
if (rightBorder - leftBorder > 1) return new int[]{leftBorder + 1, rightBorder - 1};
|
||||
// 情况二
|
||||
return new int[]{-1, -1};
|
||||
}
|
||||
|
||||
int getRightBorder(int[] nums, int target) {
|
||||
int left = 0;
|
||||
int right = nums.length - 1;
|
||||
int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
|
||||
while (left <= right) {
|
||||
int middle = left + ((right - left) / 2);
|
||||
if (nums[middle] > target) {
|
||||
right = middle - 1;
|
||||
} else { // 寻找右边界,nums[middle] == target的时候更新left
|
||||
left = middle + 1;
|
||||
rightBorder = left;
|
||||
}
|
||||
}
|
||||
return rightBorder;
|
||||
}
|
||||
|
||||
int getLeftBorder(int[] nums, int target) {
|
||||
int left = 0;
|
||||
int right = nums.length - 1;
|
||||
int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
|
||||
while (left <= right) {
|
||||
int middle = left + ((right - left) / 2);
|
||||
if (nums[middle] >= target) { // 寻找左边界,nums[middle] == target的时候更新right
|
||||
right = middle - 1;
|
||||
leftBorder = right;
|
||||
} else {
|
||||
left = middle + 1;
|
||||
}
|
||||
}
|
||||
return leftBorder;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```java
|
||||
// 解法2
|
||||
// 1、首先,在 nums 数组中二分查找 target;
|
||||
// 2、如果二分查找失败,则 binarySearch 返回 -1,表明 nums 中没有 target。此时,searchRange 直接返回 {-1, -1};
|
||||
// 3、如果二分查找成功,则 binarySearch 返回 nums 中值为 target 的一个下标。然后,通过左右滑动指针,来找到符合题意的区间
|
||||
|
||||
class Solution {
|
||||
public int[] searchRange(int[] nums, int target) {
|
||||
int index = binarySearch(nums, target); // 二分查找
|
||||
|
||||
if (index == -1) { // nums 中不存在 target,直接返回 {-1, -1}
|
||||
return new int[] {-1, -1}; // 匿名数组
|
||||
}
|
||||
// nums 中存在 targe,则左右滑动指针,来找到符合题意的区间
|
||||
int left = index;
|
||||
int right = index;
|
||||
// 向左滑动,找左边界
|
||||
while (left - 1 >= 0 && nums[left - 1] == nums[index]) { // 防止数组越界。逻辑短路,两个条件顺序不能换
|
||||
left--;
|
||||
}
|
||||
// 向左滑动,找右边界
|
||||
while (right + 1 < nums.length && nums[right + 1] == nums[index]) { // 防止数组越界。
|
||||
right++;
|
||||
}
|
||||
return new int[] {left, right};
|
||||
}
|
||||
|
||||
/**
|
||||
* 二分查找
|
||||
* @param nums
|
||||
* @param target
|
||||
*/
|
||||
public int binarySearch(int[] nums, int target) {
|
||||
int left = 0;
|
||||
int right = nums.length - 1; // 不变量:左闭右闭区间
|
||||
|
||||
while (left <= right) { // 不变量:左闭右闭区间
|
||||
int mid = left + (right - left) / 2;
|
||||
if (nums[mid] == target) {
|
||||
return mid;
|
||||
} else if (nums[mid] < target) {
|
||||
left = mid + 1;
|
||||
} else {
|
||||
right = mid - 1; // 不变量:左闭右闭区间
|
||||
}
|
||||
}
|
||||
return -1; // 不存在
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Python
|
||||
|
||||
```python
|
||||
@ -196,4 +293,3 @@ private:
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
||||
|
@ -138,7 +138,35 @@ class Solution:
|
||||
```
|
||||
|
||||
Go:
|
||||
```Go
|
||||
// solution
|
||||
// 1, dp
|
||||
// 2, 贪心
|
||||
|
||||
func maxSubArray(nums []int) int {
|
||||
n := len(nums)
|
||||
// 这里的dp[i] 表示,最大的连续子数组和,包含num[i] 元素
|
||||
dp := make([]int,n)
|
||||
// 初始化,由于dp 状态转移方程依赖dp[0]
|
||||
dp[0] = nums[0]
|
||||
// 初始化最大的和
|
||||
mx := nums[0]
|
||||
for i:=1;i<n;i++ {
|
||||
// 这里的状态转移方程就是:求最大和
|
||||
// 会面临2种情况,一个是带前面的和,一个是不带前面的和
|
||||
dp[i] = max(dp[i-1]+nums[i],nums[i])
|
||||
mx = max(mx,dp[i])
|
||||
}
|
||||
return mx
|
||||
}
|
||||
|
||||
func max(a,b int) int{
|
||||
if a>b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
@ -654,43 +654,68 @@ class Solution {
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
105.从前序与中序遍历序列构造二叉树
|
||||
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
# def __init__(self, val=0, left=None, right=None):
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
//递归法
|
||||
class Solution:
|
||||
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
|
||||
if not preorder: return None //特殊情况
|
||||
root = TreeNode(preorder[0]) //新建父节点
|
||||
p=inorder.index(preorder[0]) //找到父节点在中序遍历的位置(因为没有重复的元素,才可以这样找)
|
||||
root.left = self.buildTree(preorder[1:p+1],inorder[:p]) //注意左节点时分割中序数组和前续数组的开闭环
|
||||
root.right = self.buildTree(preorder[p+1:],inorder[p+1:]) //分割中序数组和前续数组
|
||||
return root
|
||||
# 第一步: 特殊情况讨论: 树为空. 或者说是递归终止条件
|
||||
if not preorder:
|
||||
return None
|
||||
|
||||
# 第二步: 前序遍历的第一个就是当前的中间节点.
|
||||
root_val = preorder[0]
|
||||
root = TreeNode(root_val)
|
||||
|
||||
# 第三步: 找切割点.
|
||||
separator_idx = inorder.index(root_val)
|
||||
|
||||
# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
|
||||
inorder_left = inorder[:separator_idx]
|
||||
inorder_right = inorder[separator_idx + 1:]
|
||||
|
||||
# 第五步: 切割preorder数组. 得到preorder数组的左,右半边.
|
||||
# ⭐️ 重点1: 中序数组大小一定跟前序数组大小是相同的.
|
||||
preorder_left = preorder[1:1 + len(inorder_left)]
|
||||
preorder_right = preorder[1 + len(inorder_left):]
|
||||
|
||||
# 第六步: 递归
|
||||
root.left = self.buildTree(preorder_left, inorder_left)
|
||||
root.right = self.buildTree(preorder_right, inorder_right)
|
||||
|
||||
return root
|
||||
```
|
||||
106.从中序与后序遍历序列构造二叉树
|
||||
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
# def __init__(self, val=0, left=None, right=None):
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
//递归法
|
||||
class Solution:
|
||||
def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
|
||||
if not postorder: return None //特殊情况
|
||||
root = TreeNode(postorder[-1]) //新建父节点
|
||||
p=inorder.index(postorder[-1]) //找到父节点在中序遍历的位置*因为没有重复的元素,才可以这样找
|
||||
root.left = self.buildTree(inorder[:p],postorder[:p]) //分割中序数组和后续数组
|
||||
root.right = self.buildTree(inorder[p+1:],postorder[p:-1]) //注意右节点时分割中序数组和后续数组的开闭环
|
||||
return root
|
||||
# 第一步: 特殊情况讨论: 树为空. (递归终止条件)
|
||||
if not postorder:
|
||||
return None
|
||||
|
||||
# 第二步: 后序遍历的最后一个就是当前的中间节点.
|
||||
root_val = postorder[-1]
|
||||
root = TreeNode(root_val)
|
||||
|
||||
# 第三步: 找切割点.
|
||||
separator_idx = inorder.index(root_val)
|
||||
|
||||
# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
|
||||
inorder_left = inorder[:separator_idx]
|
||||
inorder_right = inorder[separator_idx + 1:]
|
||||
|
||||
# 第五步: 切割postorder数组. 得到postorder数组的左,右半边.
|
||||
# ⭐️ 重点1: 中序数组大小一定跟后序数组大小是相同的.
|
||||
postorder_left = postorder[:len(inorder_left)]
|
||||
postorder_right = postorder[len(inorder_left): len(postorder) - 1]
|
||||
|
||||
# 第六步: 递归
|
||||
root.left = self.buildTree(inorder_left, postorder_left)
|
||||
root.right = self.buildTree(inorder_right, postorder_right)
|
||||
|
||||
return root
|
||||
```
|
||||
Go:
|
||||
> 106 从中序与后序遍历序列构造二叉树
|
||||
|
@ -416,6 +416,8 @@ class Solution {
|
||||
Python:
|
||||
|
||||
0112.路径总和
|
||||
|
||||
**递归**
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
@ -424,28 +426,56 @@ Python:
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
|
||||
// 递归法
|
||||
|
||||
class Solution:
|
||||
def hasPathSum(self, root: TreeNode, targetSum: int) -> bool:
|
||||
def isornot(root,targetSum)->bool:
|
||||
if (not root.left) and (not root.right) and targetSum == 0:return True // 遇到叶子节点,并且计数为0
|
||||
if (not root.left) and (not root.right):return False //遇到叶子节点,计数不为0
|
||||
def isornot(root, targetSum) -> bool:
|
||||
if (not root.left) and (not root.right) and targetSum == 0:
|
||||
return True # 遇到叶子节点,并且计数为0
|
||||
if (not root.left) and (not root.right):
|
||||
return False # 遇到叶子节点,计数不为0
|
||||
if root.left:
|
||||
targetSum -= root.left.val //左节点
|
||||
if isornot(root.left,targetSum):return True //递归,处理左节点
|
||||
targetSum += root.left.val //回溯
|
||||
targetSum -= root.left.val # 左节点
|
||||
if isornot(root.left, targetSum): return True # 递归,处理左节点
|
||||
targetSum += root.left.val # 回溯
|
||||
if root.right:
|
||||
targetSum -= root.right.val //右节点
|
||||
if isornot(root.right,targetSum):return True //递归,处理右节点
|
||||
targetSum += root.right.val //回溯
|
||||
targetSum -= root.right.val # 右节点
|
||||
if isornot(root.right, targetSum): return True # 递归,处理右节点
|
||||
targetSum += root.right.val # 回溯
|
||||
return False
|
||||
|
||||
if root == None:return False //别忘记处理空TreeNode
|
||||
else:return isornot(root,targetSum-root.val)
|
||||
|
||||
if root == None:
|
||||
return False # 别忘记处理空TreeNode
|
||||
else:
|
||||
return isornot(root, targetSum - root.val)
|
||||
```
|
||||
|
||||
**迭代 - 层序遍历**
|
||||
```python
|
||||
class Solution:
|
||||
def hasPathSum(self, root: TreeNode, targetSum: int) -> bool:
|
||||
if not root:
|
||||
return False
|
||||
|
||||
stack = [] # [(当前节点,路径数值), ...]
|
||||
stack.append((root, root.val))
|
||||
|
||||
while stack:
|
||||
cur_node, path_sum = stack.pop()
|
||||
|
||||
if not cur_node.left and not cur_node.right and path_sum == targetSum:
|
||||
return True
|
||||
|
||||
if cur_node.right:
|
||||
stack.append((cur_node.right, path_sum + cur_node.right.val))
|
||||
|
||||
if cur_node.left:
|
||||
stack.append((cur_node.left, path_sum + cur_node.left.val))
|
||||
|
||||
return False
|
||||
```
|
||||
0113.路径总和-ii
|
||||
|
||||
**递归**
|
||||
```python
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
@ -453,35 +483,36 @@ class Solution:
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
//递归法
|
||||
class Solution:
|
||||
def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]:
|
||||
path=[]
|
||||
res=[]
|
||||
def pathes(root,targetSum):
|
||||
if (not root.left) and (not root.right) and targetSum == 0: // 遇到叶子节点,并且计数为0
|
||||
res.append(path[:]) //找到一种路径,记录到res中,注意必须是path[:]而不是path
|
||||
return
|
||||
if (not root.left) and (not root.right):return // 遇到叶子节点直接返回
|
||||
if root.left: //左
|
||||
targetSum -= root.left.val
|
||||
path.append(root.left.val) //递归前记录节点
|
||||
pathes(root.left,targetSum) //递归
|
||||
targetSum += root.left.val //回溯
|
||||
path.pop() //回溯
|
||||
if root.right: //右
|
||||
targetSum -= root.right.val
|
||||
path.append(root.right.val) //递归前记录节点
|
||||
pathes(root.right,targetSum) //递归
|
||||
targetSum += root.right.val //回溯
|
||||
path.pop() //回溯
|
||||
return
|
||||
|
||||
if root == None:return [] //处理空TreeNode
|
||||
else:
|
||||
path.append(root.val) //首先处理根节点
|
||||
pathes(root,targetSum-root.val)
|
||||
return res
|
||||
|
||||
def traversal(cur_node, remain):
|
||||
if not cur_node.left and not cur_node.right and remain == 0:
|
||||
result.append(path[:])
|
||||
return
|
||||
|
||||
if not cur_node.left and not cur_node.right: return
|
||||
|
||||
if cur_node.left:
|
||||
path.append(cur_node.left.val)
|
||||
remain -= cur_node.left.val
|
||||
traversal(cur_node.left, remain)
|
||||
path.pop()
|
||||
remain += cur_node.left.val
|
||||
|
||||
if cur_node.right:
|
||||
path.append(cur_node.right.val)
|
||||
remain -= cur_node.right.val
|
||||
traversal(cur_node.right, remain)
|
||||
path.pop()
|
||||
remain += cur_node.right.val
|
||||
|
||||
result, path = [], []
|
||||
if not root:
|
||||
return []
|
||||
path.append(root.val)
|
||||
traversal(root, targetSum - root.val)
|
||||
return result
|
||||
```
|
||||
|
||||
Go:
|
||||
|
@ -14,7 +14,7 @@
|
||||
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
|
||||
|
||||
如果链表中存在环,则返回 true 。 否则,返回 false 。
|
||||
|
||||
|
||||

|
||||
|
||||
# 思路
|
||||
@ -74,6 +74,21 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
public class Solution {
|
||||
public boolean hasCycle(ListNode head) {
|
||||
ListNode fast = head;
|
||||
ListNode slow = head;
|
||||
// 空链表、单节点链表一定不会有环
|
||||
while (fast != null && fast.next != null) {
|
||||
fast = fast.next.next; // 快指针,一次移动两步
|
||||
slow = slow.next; // 慢指针,一次移动一步
|
||||
if (fast == slow) { // 快慢指针相遇,表明有环
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false; // 正常走到链表末尾,表明没有环
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
<p align="center">
|
||||
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
|
||||
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
|
||||
@ -63,6 +62,7 @@ public:
|
||||
## 方法二
|
||||
|
||||
把链表放进双向队列,然后通过双向队列一前一后弹出数据,来构造新的链表。这种方法比操作数组容易一些,不用双指针模拟一前一后了
|
||||
|
||||
```C++
|
||||
class Solution {
|
||||
public:
|
||||
@ -176,6 +176,51 @@ public:
|
||||
|
||||
Java:
|
||||
|
||||
```java
|
||||
public class ReorderList {
|
||||
public void reorderList(ListNode head) {
|
||||
ListNode fast = head, slow = head;
|
||||
//求出中点
|
||||
while (fast.next != null && fast.next.next != null) {
|
||||
slow = slow.next;
|
||||
fast = fast.next.next;
|
||||
}
|
||||
//right就是右半部分 12345 就是45 1234 就是34
|
||||
ListNode right = slow.next;
|
||||
//断开左部分和右部分
|
||||
slow.next = null;
|
||||
//反转右部分 right就是反转后右部分的起点
|
||||
right = reverseList(right);
|
||||
//左部分的起点
|
||||
ListNode left = head;
|
||||
//进行左右部分来回连接
|
||||
//这里左部分的节点个数一定大于等于右部分的节点个数 因此只判断right即可
|
||||
while (right != null) {
|
||||
ListNode curLeft = left.next;
|
||||
left.next = right;
|
||||
left = curLeft;
|
||||
|
||||
ListNode curRight = right.next;
|
||||
right.next = left;
|
||||
right = curRight;
|
||||
}
|
||||
}
|
||||
|
||||
public ListNode reverseList(ListNode head) {
|
||||
ListNode headNode = new ListNode(0);
|
||||
ListNode cur = head;
|
||||
ListNode next = null;
|
||||
while (cur != null) {
|
||||
next = cur.next;
|
||||
cur.next = headNode.next;
|
||||
headNode.next = cur;
|
||||
cur = next;
|
||||
}
|
||||
return headNode.next;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
Go:
|
||||
@ -183,8 +228,10 @@ Go:
|
||||
JavaScript:
|
||||
|
||||
-----------------------
|
||||
|
||||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
@ -68,6 +68,25 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public boolean isIsomorphic(String s, String t) {
|
||||
Map<Character, Character> map1 = new HashMap<>();
|
||||
Map<Character, Character> map2 = new HashMap<>();
|
||||
for (int i = 0, j = 0; i < s.length(); i++, j++) {
|
||||
if (!map1.containsKey(s.charAt(i))) {
|
||||
map1.put(s.charAt(i), t.charAt(j)); // map1保存 s[i] 到 t[j]的映射
|
||||
}
|
||||
if (!map2.containsKey(t.charAt(j))) {
|
||||
map2.put(t.charAt(j), s.charAt(i)); // map2保存 t[j] 到 s[i]的映射
|
||||
}
|
||||
// 无法映射,返回 false
|
||||
if (map1.get(s.charAt(i)) != t.charAt(j) || map2.get(t.charAt(j)) != s.charAt(i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
|
@ -275,7 +275,50 @@ var reverseList = function(head) {
|
||||
};
|
||||
```
|
||||
|
||||
Ruby:
|
||||
|
||||
```ruby
|
||||
# 双指针
|
||||
# Definition for singly-linked list.
|
||||
# class ListNode
|
||||
# attr_accessor :val, :next
|
||||
# def initialize(val = 0, _next = nil)
|
||||
# @val = val
|
||||
# @next = _next
|
||||
# end
|
||||
# end
|
||||
def reverse_list(head)
|
||||
# return nil if head.nil? # 循环判断条件亦能起到相同作用因此不必单独判断
|
||||
cur, per = head, nil
|
||||
until cur.nil?
|
||||
tem = cur.next
|
||||
cur.next = per
|
||||
per = cur
|
||||
cur = tem
|
||||
end
|
||||
per
|
||||
end
|
||||
|
||||
# 递归
|
||||
# Definition for singly-linked list.
|
||||
# class ListNode
|
||||
# attr_accessor :val, :next
|
||||
# def initialize(val = 0, _next = nil)
|
||||
# @val = val
|
||||
# @next = _next
|
||||
# end
|
||||
# end
|
||||
def reverse_list(head)
|
||||
reverse(nil, head)
|
||||
end
|
||||
|
||||
def reverse(pre, cur)
|
||||
return pre if cur.nil?
|
||||
tem = cur.next
|
||||
cur.next = pre
|
||||
reverse(cur, tem) # 通过递归实现双指针法中的更新操作
|
||||
end
|
||||
```
|
||||
|
||||
|
||||
-----------------------
|
||||
|
@ -384,7 +384,7 @@ func (this *MyQueue) Peek() int {
|
||||
func (this *MyQueue) Empty() bool {
|
||||
return len(this.stack) == 0 && len(this.back) == 0
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
javaScript:
|
||||
|
||||
@ -442,8 +442,6 @@ MyQueue.prototype.empty = function() {
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
-----------------------
|
||||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||||
|
@ -64,6 +64,21 @@ public:
|
||||
|
||||
Java:
|
||||
|
||||
```java
|
||||
public void moveZeroes(int[] nums) {
|
||||
int slow = 0;
|
||||
for (int fast = 0; fast < nums.length; fast++) {
|
||||
if (nums[fast] != 0) {
|
||||
nums[slow++] = nums[fast];
|
||||
}
|
||||
}
|
||||
// 后面的元素全变成 0
|
||||
for (int j = slow; j < nums.length; j++) {
|
||||
nums[j] = 0;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
```python
|
||||
|
@ -205,25 +205,51 @@ class Solution {
|
||||
|
||||
|
||||
Python:
|
||||
```Python
|
||||
|
||||
**递归**
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
# def __init__(self, val=0, left=None, right=None):
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
```python
|
||||
class Solution:
|
||||
def sumOfLeftLeaves(self, root: TreeNode) -> int:
|
||||
self.res=0
|
||||
def areleftleaves(root):
|
||||
if not root:return
|
||||
if root.left and (not root.left.left) and (not root.left.right):self.res+=root.left.val
|
||||
areleftleaves(root.left)
|
||||
areleftleaves(root.right)
|
||||
areleftleaves(root)
|
||||
return self.res
|
||||
if not root:
|
||||
return 0
|
||||
|
||||
left_left_leaves_sum = self.sumOfLeftLeaves(root.left) # 左
|
||||
right_left_leaves_sum = self.sumOfLeftLeaves(root.right) # 右
|
||||
|
||||
cur_left_leaf_val = 0
|
||||
if root.left and not root.left.left and not root.left.right:
|
||||
cur_left_leaf_val = root.left.val # 中
|
||||
|
||||
return cur_left_leaf_val + left_left_leaves_sum + right_left_leaves_sum
|
||||
```
|
||||
|
||||
**迭代**
|
||||
```python
|
||||
class Solution:
|
||||
def sumOfLeftLeaves(self, root: TreeNode) -> int:
|
||||
"""
|
||||
Idea: Each time check current node's left node.
|
||||
If current node don't have one, skip it.
|
||||
"""
|
||||
stack = []
|
||||
if root:
|
||||
stack.append(root)
|
||||
res = 0
|
||||
|
||||
while stack:
|
||||
# 每次都把当前节点的左节点加进去.
|
||||
cur_node = stack.pop()
|
||||
if cur_node.left and not cur_node.left.left and not cur_node.left.right:
|
||||
res += cur_node.left.val
|
||||
|
||||
if cur_node.left:
|
||||
stack.append(cur_node.left)
|
||||
if cur_node.right:
|
||||
stack.append(cur_node.right)
|
||||
|
||||
return res
|
||||
```
|
||||
|
||||
Go:
|
||||
|
||||
> 递归法
|
||||
|
@ -211,6 +211,29 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
Java:
|
||||
按左边排序,不管右边顺序。相交的时候取最小的右边。
|
||||
```java
|
||||
class Solution {
|
||||
public int eraseOverlapIntervals(int[][] intervals) {
|
||||
|
||||
Arrays.sort(intervals,(a,b)->{
|
||||
return Integer.compare(a[0],b[0]);
|
||||
});
|
||||
int remove = 0;
|
||||
int pre = intervals[0][1];
|
||||
for(int i=1;i<intervals.length;i++){
|
||||
if(pre>intervals[i][0]) {
|
||||
remove++;
|
||||
pre = Math.min(pre,intervals[i][1]);
|
||||
}
|
||||
else pre = intervals[i][1];
|
||||
}
|
||||
return remove;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Python:
|
||||
```python
|
||||
class Solution:
|
||||
|
@ -289,8 +289,79 @@ func repeatedSubstringPattern(s string) bool {
|
||||
}
|
||||
```
|
||||
|
||||
JavaScript版本
|
||||
|
||||
> 前缀表统一减一
|
||||
|
||||
```javascript
|
||||
/**
|
||||
* @param {string} s
|
||||
* @return {boolean}
|
||||
*/
|
||||
var repeatedSubstringPattern = function (s) {
|
||||
if (s.length === 0)
|
||||
return false;
|
||||
|
||||
const getNext = (s) => {
|
||||
let next = [];
|
||||
let j = -1;
|
||||
|
||||
next.push(j);
|
||||
|
||||
for (let i = 1; i < s.length; ++i) {
|
||||
while (j >= 0 && s[i] !== s[j + 1])
|
||||
j = next[j];
|
||||
if (s[i] === s[j + 1])
|
||||
j++;
|
||||
next.push(j);
|
||||
}
|
||||
|
||||
return next;
|
||||
}
|
||||
|
||||
let next = getNext(s);
|
||||
|
||||
if (next[next.length - 1] !== -1 && s.length % (s.length - (next[next.length - 1] + 1)) === 0)
|
||||
return true;
|
||||
return false;
|
||||
};
|
||||
```
|
||||
|
||||
> 前缀表统一不减一
|
||||
|
||||
```javascript
|
||||
/**
|
||||
* @param {string} s
|
||||
* @return {boolean}
|
||||
*/
|
||||
var repeatedSubstringPattern = function (s) {
|
||||
if (s.length === 0)
|
||||
return false;
|
||||
|
||||
const getNext = (s) => {
|
||||
let next = [];
|
||||
let j = 0;
|
||||
|
||||
next.push(j);
|
||||
|
||||
for (let i = 1; i < s.length; ++i) {
|
||||
while (j > 0 && s[i] !== s[j])
|
||||
j = next[j - 1];
|
||||
if (s[i] === s[j])
|
||||
j++;
|
||||
next.push(j);
|
||||
}
|
||||
|
||||
return next;
|
||||
}
|
||||
|
||||
let next = getNext(s);
|
||||
|
||||
if (next[next.length - 1] !== 0 && s.length % (s.length - next[next.length - 1]) === 0)
|
||||
return true;
|
||||
return false;
|
||||
};
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
@ -274,27 +274,51 @@ class Solution {
|
||||
|
||||
|
||||
Python:
|
||||
|
||||
**递归 - 回溯**
|
||||
```python
|
||||
//递归法
|
||||
# Definition for a binary tree node.
|
||||
# class TreeNode:
|
||||
# def __init__(self, val=0, left=None, right=None):
|
||||
# self.val = val
|
||||
# self.left = left
|
||||
# self.right = right
|
||||
class Solution:
|
||||
def findBottomLeftValue(self, root: TreeNode) -> int:
|
||||
depth=0
|
||||
self.res=[]
|
||||
def level(root,depth):
|
||||
if not root:return
|
||||
if depth==len(self.res):
|
||||
self.res.append([])
|
||||
self.res[depth].append(root.val)
|
||||
level(root.left,depth+1)
|
||||
level(root.right,depth+1)
|
||||
level(root,depth)
|
||||
return self.res[-1][0]
|
||||
max_depth = -float("INF")
|
||||
leftmost_val = 0
|
||||
|
||||
def __traverse(root, cur_depth):
|
||||
nonlocal max_depth, leftmost_val
|
||||
if not root.left and not root.right:
|
||||
if cur_depth > max_depth:
|
||||
max_depth = cur_depth
|
||||
leftmost_val = root.val
|
||||
if root.left:
|
||||
cur_depth += 1
|
||||
__traverse(root.left, cur_depth)
|
||||
cur_depth -= 1
|
||||
if root.right:
|
||||
cur_depth += 1
|
||||
__traverse(root.right, cur_depth)
|
||||
cur_depth -= 1
|
||||
|
||||
__traverse(root, 0)
|
||||
return leftmost_val
|
||||
```
|
||||
**迭代 - 层序遍历**
|
||||
```python
|
||||
class Solution:
|
||||
def findBottomLeftValue(self, root: TreeNode) -> int:
|
||||
queue = deque()
|
||||
if root:
|
||||
queue.append(root)
|
||||
result = 0
|
||||
while queue:
|
||||
q_len = len(queue)
|
||||
for i in range(q_len):
|
||||
if i == 0:
|
||||
result = queue[i].val
|
||||
cur = queue.popleft()
|
||||
if cur.left:
|
||||
queue.append(cur.left)
|
||||
if cur.right:
|
||||
queue.append(cur.right)
|
||||
return result
|
||||
```
|
||||
Go:
|
||||
|
||||
|
@ -71,21 +71,84 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
// 时间复杂度:O(n)
|
||||
// 空间复杂度:如果采用 toCharArray,则是 O(n);如果使用 charAt,则是 O(1)
|
||||
class Solution {
|
||||
public boolean judgeCircle(String moves) {
|
||||
int x = 0;
|
||||
int y = 0;
|
||||
for (char c : moves.toCharArray()) {
|
||||
if (c == 'U') y++;
|
||||
if (c == 'D') y--;
|
||||
if (c == 'L') x++;
|
||||
if (c == 'R') x--;
|
||||
}
|
||||
return x == 0 && y == 0;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
|
||||
```python
|
||||
# 时间复杂度:O(n)
|
||||
# 空间复杂度:O(1)
|
||||
class Solution:
|
||||
def judgeCircle(self, moves: str) -> bool:
|
||||
x = 0 # 记录当前位置
|
||||
y = 0
|
||||
for i in range(len(moves)):
|
||||
if (moves[i] == 'U'):
|
||||
y += 1
|
||||
if (moves[i] == 'D'):
|
||||
y -= 1
|
||||
if (moves[i] == 'L'):
|
||||
x += 1
|
||||
if (moves[i] == 'R'):
|
||||
x -= 1
|
||||
return x == 0 and y == 0
|
||||
```
|
||||
|
||||
## Go
|
||||
|
||||
```go
|
||||
func judgeCircle(moves string) bool {
|
||||
x := 0
|
||||
y := 0
|
||||
for i := 0; i < len(moves); i++ {
|
||||
if moves[i] == 'U' {
|
||||
y++
|
||||
}
|
||||
if moves[i] == 'D' {
|
||||
y--
|
||||
}
|
||||
if moves[i] == 'L' {
|
||||
x++
|
||||
}
|
||||
if moves[i] == 'R' {
|
||||
x--
|
||||
}
|
||||
}
|
||||
return x == 0 && y == 0;
|
||||
}
|
||||
```
|
||||
|
||||
## JavaScript
|
||||
|
||||
```js
|
||||
// 时间复杂度:O(n)
|
||||
// 空间复杂度:O(1)
|
||||
var judgeCircle = function(moves) {
|
||||
var x = 0; // 记录当前位置
|
||||
var y = 0;
|
||||
for (var i = 0; i < moves.length; i++) {
|
||||
if (moves[i] == 'U') y++;
|
||||
if (moves[i] == 'D') y--;
|
||||
if (moves[i] == 'L') x++;
|
||||
if (moves[i] == 'R') x--;
|
||||
}
|
||||
return x == 0 && y == 0;
|
||||
};
|
||||
```
|
||||
|
||||
-----------------------
|
||||
|
@ -235,8 +235,6 @@ class Solution:
|
||||
return -1
|
||||
```
|
||||
|
||||
|
||||
|
||||
**Go:**
|
||||
|
||||
(版本一)左闭右闭区间
|
||||
@ -279,7 +277,7 @@ func search(nums []int, target int) int {
|
||||
}
|
||||
```
|
||||
|
||||
**javaScript:**
|
||||
**JavaScript:**
|
||||
|
||||
```js
|
||||
|
||||
@ -316,7 +314,43 @@ var search = function(nums, target) {
|
||||
|
||||
```
|
||||
|
||||
**Ruby:**
|
||||
|
||||
```ruby
|
||||
# (版本一)左闭右闭区间
|
||||
|
||||
def search(nums, target)
|
||||
left, right = 0, nums.length - 1
|
||||
while left <= right # 由于定义target在一个在左闭右闭的区间里,因此极限情况下存在left==right
|
||||
middle = (left + right) / 2
|
||||
if nums[middle] > target
|
||||
right = middle - 1
|
||||
elsif nums[middle] < target
|
||||
left = middle + 1
|
||||
else
|
||||
return middle # return兼具返回与跳出循环的作用
|
||||
end
|
||||
end
|
||||
-1
|
||||
end
|
||||
|
||||
# (版本二)左闭右开区间
|
||||
|
||||
def search(nums, target)
|
||||
left, right = 0, nums.length
|
||||
while left < right # 由于定义target在一个在左闭右开的区间里,因此极限情况下right=left+1
|
||||
middle = (left + right) / 2
|
||||
if nums[middle] > target
|
||||
right = middle
|
||||
elsif nums[middle] < target
|
||||
left = middle + 1
|
||||
else
|
||||
return middle
|
||||
end
|
||||
end
|
||||
-1
|
||||
end
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
@ -252,6 +252,33 @@ func findLength(A []int, B []int) int {
|
||||
}
|
||||
```
|
||||
|
||||
JavaScript:
|
||||
|
||||
> 动态规划
|
||||
|
||||
```javascript
|
||||
const findLength = (A, B) => {
|
||||
// A、B数组的长度
|
||||
const [m, n] = [A.length, B.length];
|
||||
// dp数组初始化,都初始化为0
|
||||
const dp = new Array(m + 1).fill(0).map(x => new Array(n + 1).fill(0));
|
||||
// 初始化最大长度为0
|
||||
let res = 0;
|
||||
for (let i = 1; i <= m; i++) {
|
||||
for (let j = 1; j <= n; j++) {
|
||||
// 遇到A[i - 1] === B[j - 1],则更新dp数组
|
||||
if (A[i - 1] === B[j - 1]) {
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||||
}
|
||||
// 更新res
|
||||
res = dp[i][j] > res ? dp[i][j] : res;
|
||||
}
|
||||
}
|
||||
// 遍历完成,返回res
|
||||
return res;
|
||||
};
|
||||
```
|
||||
|
||||
|
||||
|
||||
-----------------------
|
||||
|
@ -67,6 +67,24 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public int pivotIndex(int[] nums) {
|
||||
int sum = 0;
|
||||
for (int i = 0; i < nums.length; i++) {
|
||||
sum += nums[i]; // 总和
|
||||
}
|
||||
int leftSum = 0;
|
||||
int rightSum = 0;
|
||||
for (int i = 0; i < nums.length; i++) {
|
||||
leftSum += nums[i];
|
||||
rightSum = sum - leftSum + nums[i]; // leftSum 里面已经有 nums[i],多减了一次,所以加上
|
||||
if (leftSum == rightSum) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1; // 不存在
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
@ -90,4 +108,3 @@ public:
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
给定 S 和 T 两个字符串,当它们分别被输入到空白的文本编辑器后,判断二者是否相等,并返回结果。 # 代表退格字符。
|
||||
|
||||
注意:如果对空文本输入退格字符,文本继续为空。
|
||||
|
||||
|
||||
示例 1:
|
||||
* 输入:S = "ab#c", T = "ad#c"
|
||||
* 输出:true
|
||||
@ -160,6 +160,32 @@ public:
|
||||
|
||||
Java:
|
||||
|
||||
```java
|
||||
// 普通方法(使用栈的思路)
|
||||
class Solution {
|
||||
public boolean backspaceCompare(String s, String t) {
|
||||
StringBuilder ssb = new StringBuilder(); // 模拟栈
|
||||
StringBuilder tsb = new StringBuilder(); // 模拟栈
|
||||
// 分别处理两个 String
|
||||
for (char c : s.toCharArray()) {
|
||||
if (c != '#') {
|
||||
ssb.append(c); // 模拟入栈
|
||||
} else if (ssb.length() > 0){ // 栈非空才能弹栈
|
||||
ssb.deleteCharAt(ssb.length() - 1); // 模拟弹栈
|
||||
}
|
||||
}
|
||||
for (char c : t.toCharArray()) {
|
||||
if (c != '#') {
|
||||
tsb.append(c); // 模拟入栈
|
||||
} else if (tsb.length() > 0){ // 栈非空才能弹栈
|
||||
tsb.deleteCharAt(tsb.length() - 1); // 模拟弹栈
|
||||
}
|
||||
}
|
||||
return ssb.toString().equals(tsb.toString());
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
Go:
|
||||
|
@ -120,6 +120,31 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
// 方法一
|
||||
class Solution {
|
||||
public int[] sortArrayByParityII(int[] nums) {
|
||||
// 分别存放 nums 中的奇数、偶数
|
||||
int len = nums.length;
|
||||
int evenIndex = 0;
|
||||
int oddIndex = 0;
|
||||
int[] even = new int[len / 2];
|
||||
int[] odd = new int[len / 2];
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (nums[i] % 2 == 0) {
|
||||
even[evenIndex++] = nums[i];
|
||||
} else {
|
||||
odd[oddIndex++] = nums[i];
|
||||
}
|
||||
}
|
||||
// 把奇偶数组重新存回 nums
|
||||
int index = 0;
|
||||
for (int i = 0; i < even.length; i++) {
|
||||
nums[index++] = even[i];
|
||||
nums[index++] = odd[i];
|
||||
}
|
||||
return nums;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
@ -143,4 +168,3 @@ public:
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
||||
|
@ -18,7 +18,7 @@ https://leetcode-cn.com/problems/valid-mountain-array/
|
||||
|
||||
C++代码如下:
|
||||
|
||||
```
|
||||
```c++
|
||||
class Solution {
|
||||
public:
|
||||
bool validMountainArray(vector<int>& A) {
|
||||
@ -38,6 +38,33 @@ public:
|
||||
}
|
||||
};
|
||||
```
|
||||
Java 版本如下:
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public boolean validMountainArray(int[] arr) {
|
||||
if (arr.length < 3) { // 此时,一定不是有效的山脉数组
|
||||
return false;
|
||||
}
|
||||
// 双指针
|
||||
int left = 0;
|
||||
int right = arr.length - 1;
|
||||
// 注意防止指针越界
|
||||
while (left + 1 < arr.length && arr[left] < arr[left + 1]) {
|
||||
left++;
|
||||
}
|
||||
// 注意防止指针越界
|
||||
while (right > 0 && arr[right] < arr[right - 1]) {
|
||||
right--;
|
||||
}
|
||||
// 如果left或者right都在起始位置,说明不是山峰
|
||||
if (left == right && left != 0 && right != arr.length - 1) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
如果想系统学一学双指针的话, 可以看一下这篇[双指针法:总结篇!](https://mp.weixin.qq.com/s/_p7grwjISfMh0U65uOyCjA)
|
||||
|
||||
|
||||
|
@ -77,6 +77,28 @@ public:
|
||||
|
||||
Java:
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public boolean uniqueOccurrences(int[] arr) {
|
||||
int[] count = new int[2002];
|
||||
for (int i = 0; i < arr.length; i++) {
|
||||
count[arr[i] + 1000]++; // 防止负数作为下标
|
||||
}
|
||||
boolean[] flag = new boolean[1002]; // 标记相同频率是否重复出现
|
||||
for (int i = 0; i <= 2000; i++) {
|
||||
if (count[i] > 0) {
|
||||
if (flag[count[i]] == false) {
|
||||
flag[count[i]] = true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
Go:
|
||||
@ -89,4 +111,3 @@ JavaScript:
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
换而言之,对于每个 nums[i] 你必须计算出有效的 j 的数量,其中 j 满足 j != i 且 nums[j] < nums[i] 。
|
||||
|
||||
以数组形式返回答案。
|
||||
|
||||
|
||||
|
||||
示例 1:
|
||||
输入:nums = [8,1,2,2,3]
|
||||
@ -35,7 +35,7 @@
|
||||
示例 3:
|
||||
输入:nums = [7,7,7,7]
|
||||
输出:[0,0,0,0]
|
||||
|
||||
|
||||
提示:
|
||||
* 2 <= nums.length <= 500
|
||||
* 0 <= nums[i] <= 100
|
||||
@ -120,8 +120,51 @@ public:
|
||||
## Java
|
||||
|
||||
```java
|
||||
/**
|
||||
* 解法一:暴力
|
||||
* 时间复杂度:O(n^2)
|
||||
* 空间复杂度:O(n)
|
||||
*/
|
||||
class Solution {
|
||||
public int[] smallerNumbersThanCurrent(int[] nums) {
|
||||
int[] res = new int[nums.length];
|
||||
for (int i = 0; i < nums.length; i++) {
|
||||
for (int j = 0; j < nums.length; j++) {
|
||||
if (nums[j] < nums[i] && j != i) { // 注意 j 不能和 i 重合
|
||||
res[i]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```java
|
||||
/**
|
||||
* 优化:排序 + 哈希表
|
||||
* 时间复杂度:O(nlogn)
|
||||
* 空间复杂度:O(n)
|
||||
*/
|
||||
class Solution {
|
||||
public int[] smallerNumbersThanCurrent(int[] nums) {
|
||||
int[] res = Arrays.copyOf(nums, nums.length);
|
||||
Arrays.sort(res); // 是对 res 排序,nums 中顺序还要保持
|
||||
int[] hash = new int[101]; // 使用哈希表,记录比当前元素小的元素个数
|
||||
for (int i = res.length - 1; i >= 0; i--) { // 注意:从后向前
|
||||
hash[res[i]] = i; // 排序后,当前下标即表示比当前元素小的元素个数
|
||||
}
|
||||
// 此时 hash中保存的每一个元素数值 便是 小于这个数值的个数
|
||||
for (int i = 0; i < res.length; i++) {
|
||||
res[i] = hash[nums[i]];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Python
|
||||
|
||||
```python
|
||||
@ -143,4 +186,3 @@ public:
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
||||
|
@ -222,7 +222,7 @@ Go:
|
||||
|
||||
前序遍历:
|
||||
```go
|
||||
func PreorderTraversal(root *TreeNode) (res []int) {
|
||||
func preorderTraversal(root *TreeNode) (res []int) {
|
||||
var traversal func(node *TreeNode)
|
||||
traversal = func(node *TreeNode) {
|
||||
if node == nil {
|
||||
@ -240,7 +240,7 @@ func PreorderTraversal(root *TreeNode) (res []int) {
|
||||
中序遍历:
|
||||
|
||||
```go
|
||||
func InorderTraversal(root *TreeNode) (res []int) {
|
||||
func inorderTraversal(root *TreeNode) (res []int) {
|
||||
var traversal func(node *TreeNode)
|
||||
traversal = func(node *TreeNode) {
|
||||
if node == nil {
|
||||
@ -257,7 +257,7 @@ func InorderTraversal(root *TreeNode) (res []int) {
|
||||
后序遍历:
|
||||
|
||||
```go
|
||||
func PostorderTraversal(root *TreeNode) (res []int) {
|
||||
func postorderTraversal(root *TreeNode) (res []int) {
|
||||
var traversal func(node *TreeNode)
|
||||
traversal = func(node *TreeNode) {
|
||||
if node == nil {
|
||||
|
@ -165,6 +165,22 @@ func reverse(b []byte, left, right int){
|
||||
```
|
||||
|
||||
|
||||
JavaScript:
|
||||
|
||||
```javascript
|
||||
var reverseLeftWords = function (s, n) {
|
||||
const reverse = (str, left, right) => {
|
||||
let strArr = str.split("");
|
||||
for (; left < right; left++, right--) {
|
||||
[strArr[left], strArr[right]] = [strArr[right], strArr[left]];
|
||||
}
|
||||
return strArr.join("");
|
||||
}
|
||||
s = reverse(s, 0, n - 1);
|
||||
s = reverse(s, n, s.length - 1);
|
||||
return reverse(s, 0, s.length - 1);
|
||||
};
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user