Merge pull request #2830 from SWJTUHJF/master

增添了 0095.城市间货物运输II 和 0096.城市间货物运输III 的Python3 SPFA解法
This commit is contained in:
程序员Carl
2024-12-23 09:37:05 +08:00
committed by GitHub
2 changed files with 93 additions and 0 deletions

View File

@ -333,6 +333,8 @@ public class Main {
### Python
Bellman-Ford方法求解含有负回路的最短路问题
```python
import sys
@ -388,6 +390,52 @@ if __name__ == "__main__":
```
SPFA方法求解含有负回路的最短路问题
```python
from collections import deque
from math import inf
def main():
n, m = [int(i) for i in input().split()]
graph = [[] for _ in range(n+1)]
min_dist = [inf for _ in range(n+1)]
count = [0 for _ in range(n+1)] # 记录节点加入队列的次数
for _ in range(m):
s, t, v = [int(i) for i in input().split()]
graph[s].append([t, v])
min_dist[1] = 0 # 初始化
count[1] = 1
d = deque([1])
flag = False
while d: # 主循环
cur_node = d.popleft()
for next_node, val in graph[cur_node]:
if min_dist[next_node] > min_dist[cur_node] + val:
min_dist[next_node] = min_dist[cur_node] + val
count[next_node] += 1
if next_node not in d:
d.append(next_node)
if count[next_node] == n: # 如果某个点松弛了n次说明有负回路
flag = True
if flag:
break
if flag:
print("circle")
else:
if min_dist[-1] == inf:
print("unconnected")
else:
print(min_dist[-1])
if __name__ == "__main__":
main()
```
### Go
### Rust

View File

@ -822,6 +822,9 @@ public class SPFAForSSSP {
### Python
Bellman-Ford方法求解单源有限最短路
```python
def main():
# 輸入
@ -855,6 +858,48 @@ def main():
if __name__ == "__main__":
main()
```
SPFA方法求解单源有限最短路
```python
from collections import deque
from math import inf
def main():
n, m = [int(i) for i in input().split()]
graph = [[] for _ in range(n+1)]
for _ in range(m):
v1, v2, val = [int(i) for i in input().split()]
graph[v1].append([v2, val])
src, dst, k = [int(i) for i in input().split()]
min_dist = [inf for _ in range(n+1)]
min_dist[src] = 0 # 初始化起点的距离
que = deque([src])
while k != -1 and que:
visited = [False for _ in range(n+1)] # 用于保证每次松弛时一个节点最多加入队列一次
que_size = len(que)
temp_dist = min_dist.copy() # 用于记录上一次遍历的结果
for _ in range(que_size):
cur_node = que.popleft()
for next_node, val in graph[cur_node]:
if min_dist[next_node] > temp_dist[cur_node] + val:
min_dist[next_node] = temp_dist[cur_node] + val
if not visited[next_node]:
que.append(next_node)
visited[next_node] = True
k -= 1
if min_dist[dst] == inf:
print("unreachable")
else:
print(min_dist[dst])
if __name__ == "__main__":
main()
```