Add top-down dynamic programming solution to Jump Game.

This commit is contained in:
Oleksii Trekhleb
2018-07-10 07:37:29 +03:00
parent b71a2ebe9e
commit 57c2a334ce
2 changed files with 95 additions and 0 deletions

View File

@ -0,0 +1,17 @@
import dpTopDownJumpGame from '../dpTopDownJumpGame';
describe('dpTopDownJumpGame', () => {
it('should solve Jump Game problem in top-down dynamic programming manner', () => {
expect(dpTopDownJumpGame([1, 0])).toBeTruthy();
expect(dpTopDownJumpGame([100, 0])).toBeTruthy();
expect(dpTopDownJumpGame([2, 3, 1, 1, 4])).toBeTruthy();
expect(dpTopDownJumpGame([1, 1, 1, 1, 1])).toBeTruthy();
expect(dpTopDownJumpGame([1, 1, 1, 10, 1])).toBeTruthy();
expect(dpTopDownJumpGame([1, 5, 2, 1, 0, 2, 0])).toBeTruthy();
expect(dpTopDownJumpGame([1, 0, 1])).toBeFalsy();
expect(dpTopDownJumpGame([3, 2, 1, 0, 4])).toBeFalsy();
expect(dpTopDownJumpGame([0, 0, 0, 0, 0])).toBeFalsy();
expect(dpTopDownJumpGame([5, 4, 3, 2, 1, 0, 0])).toBeFalsy();
});
});

View File

@ -0,0 +1,78 @@
/**
* DYNAMIC PROGRAMMING TOP-DOWN approach of solving Jump Game.
*
* This comes out as an optimisation of BACKTRACKING approach.
* Optimisation is done by using memo table where we store information
* about each cell whether it is "good" or "bad" or "unknown".
*
* We call a position in the array a "good" one if starting at that
* position, we can reach the last index.
*
* @param {number[]} numbers - array of possible jump length.
* @param {number} startIndex - index from where we start jumping.
* @param {number[]} currentJumps - current jumps path.
* @param {boolean[]} cellsGoodness - holds information about whether cell is "good" or "bad"
* @return {boolean}
*/
export default function dpTopDownJumpGame(
numbers,
startIndex = 0,
currentJumps = [],
cellsGoodness = [],
) {
if (startIndex === numbers.length - 1) {
// We've jumped directly to last cell. This situation is a solution.
return true;
}
// Init cell goodness table if it is empty.
// This is DYNAMIC PROGRAMMING feature.
const currentCellsGoodness = [...cellsGoodness];
if (!currentCellsGoodness.length) {
numbers.forEach(() => currentCellsGoodness.push(undefined));
// Mark the last cell as "good" one since it is where
// we ultimately want to get.
currentCellsGoodness[cellsGoodness.length - 1] = true;
}
// Check what the longest jump we could make from current position.
// We don't need to jump beyond the array.
const maxJumpLength = Math.min(
numbers[startIndex], // Jump is within array.
numbers.length - 1 - startIndex, // Jump goes beyond array.
);
// Let's start jumping from startIndex and see whether any
// jump is successful and has reached the end of the array.
for (let jumpLength = maxJumpLength; jumpLength > 0; jumpLength -= 1) {
// Try next jump.
const nextIndex = startIndex + jumpLength;
// Jump only into "good" or "unknown" cells.
// This is top-down dynamic programming optimisation of backtracking algorithm.
if (currentCellsGoodness[nextIndex] !== false) {
currentJumps.push(nextIndex);
const isJumpSuccessful = dpTopDownJumpGame(
numbers,
nextIndex,
currentJumps,
currentCellsGoodness,
);
// Check if current jump was successful.
if (isJumpSuccessful) {
return true;
}
// BACKTRACKING.
// If previous jump wasn't successful then retreat and try the next one.
currentJumps.pop();
// Mark current cell as "bad" to avoid its deep visiting later.
currentCellsGoodness[nextIndex] = false;
}
}
return false;
}