6.5 KiB
		
	
	
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	二分查找
「二分查找 Binary Search」是一种基于分治思想的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。
!!! question
给定一个长度为 $n$ 的数组 `nums` ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 `target` 在该数组中的索引。若数组不包含该元素,则返回 $-1$ 。
对于上述问题,我们先初始化指针 i = 0 和 j = n - 1 ,分别指向数组首元素和尾元素,代表搜索区间 [0, n - 1] 。其中,中括号表示“闭区间”,即包含边界值本身。
接下来,循环执行以下两个步骤:
- 计算中点索引 
m = \lfloor {(i + j) / 2} \rfloor,其中\lfloor \space \rfloor表示向下取整操作。 - 判断 
nums[m]和target的大小关系,分为三种情况:- 当 
nums[m] < target时,说明target在区间[m + 1, j]中,因此执行i = m + 1; - 当 
nums[m] > target时,说明target在区间[i, m - 1]中,因此执行j = m - 1; - 当 
nums[m] = target时,说明找到target,因此返回索引m; 
 - 当 
 
若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 -1 。
值得注意的是,由于 i 和 j 都是 int 类型,因此 i + j 可能会超出 int 类型的取值范围。为了避免大数越界,我们通常采用公式 m = \lfloor {i + (j - i) / 2} \rfloor 来计算中点。
=== "Java"
```java title="binary_search.java"
[class]{binary_search}-[func]{binarySearch}
```
=== "C++"
```cpp title="binary_search.cpp"
[class]{}-[func]{binarySearch}
```
=== "Python"
```python title="binary_search.py"
[class]{}-[func]{binary_search}
```
=== "Go"
```go title="binary_search.go"
[class]{}-[func]{binarySearch}
```
=== "JavaScript"
```javascript title="binary_search.js"
[class]{}-[func]{binarySearch}
```
=== "TypeScript"
```typescript title="binary_search.ts"
[class]{}-[func]{binarySearch}
```
=== "C"
```c title="binary_search.c"
[class]{}-[func]{binarySearch}
```
=== "C#"
```csharp title="binary_search.cs"
[class]{binary_search}-[func]{binarySearch}
```
=== "Swift"
```swift title="binary_search.swift"
[class]{}-[func]{binarySearch}
```
=== "Zig"
```zig title="binary_search.zig"
[class]{}-[func]{binarySearch}
```
时间复杂度为 O(\log n) 。每轮缩小一半区间,因此二分循环次数为 \log_2 n 。
空间复杂度为 O(1)  。指针 i , j 使用常数大小空间。
区间表示方法
除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 [0, n) ,即左边界包含自身,右边界不包含自身。在该表示下,区间 [i, j] 在 i = j 时为空。
我们可以基于该表示实现具有相同功能的二分查找算法。
=== "Java"
```java title="binary_search.java"
[class]{binary_search}-[func]{binarySearchLCRO}
```
=== "C++"
```cpp title="binary_search.cpp"
[class]{}-[func]{binarySearchLCRO}
```
=== "Python"
```python title="binary_search.py"
[class]{}-[func]{binary_search_lcro}
```
=== "Go"
```go title="binary_search.go"
[class]{}-[func]{binarySearchLCRO}
```
=== "JavaScript"
```javascript title="binary_search.js"
[class]{}-[func]{binarySearchLCRO}
```
=== "TypeScript"
```typescript title="binary_search.ts"
[class]{}-[func]{binarySearchLCRO}
```
=== "C"
```c title="binary_search.c"
[class]{}-[func]{binarySearchLCRO}
```
=== "C#"
```csharp title="binary_search.cs"
[class]{binary_search}-[func]{binarySearchLCRO}
```
=== "Swift"
```swift title="binary_search.swift"
[class]{}-[func]{binarySearchLCRO}
```
=== "Zig"
```zig title="binary_search.zig"
[class]{}-[func]{binarySearchLCRO}
```
如下图所示,在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。
在“双闭区间”表示法中,由于左右边界都被定义为闭区间,因此指针 i 和 j 缩小区间操作也是对称的。这样更不容易出错。因此,我们通常采用“双闭区间”的写法。
优点与局限性
二分查找在时间和空间方面都有较好的性能:
- 二分查找的时间效率高。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 
n = 2^{20}时,线性查找需要2^{20} = 1048576轮循环,而二分查找仅需\log_2 2^{20} = 20轮循环。 - 二分查找无需额外空间。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。
 
然而,二分查找并非适用于所有情况,原因如下:
- 二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 
O(n \log n),比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为O(n),也是非常昂贵的。 - 二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
 - 小数据量下,线性查找性能更佳。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 
n较小时,线性查找反而比二分查找更快。 








