 c4a7966882
			
		
	
	c4a7966882
	
	
	
		
			
			* Add "reference" for EN version. Bug fixes. * Unify the figure reference as "the figure below" and "the figure above". Bug fixes. * Format the EN markdown files. * Replace "" with <u></u> for EN version and bug fixes * Fix biary_tree_dfs.png * Fix biary_tree_dfs.png * Fix zh-hant/biary_tree_dfs.png * Fix heap_sort_step1.png * Sync zh and zh-hant versions. * Bug fixes * Fix EN figures * Bug fixes * Fix the figure labels for EN version
		
			
				
	
	
	
		
			3.6 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	n 皇后問題
!!! question
根據國際象棋的規則,皇后可以攻擊與同處一行、一列或一條斜線上的棋子。給定 $n$ 個皇后和一個 $n \times n$ 大小的棋盤,尋找使得所有皇后之間無法相互攻擊的擺放方案。
如下圖所示,當 n = 4 時,共可以找到兩個解。從回溯演算法的角度看,n \times n 大小的棋盤共有 n^2 個格子,給出了所有的選擇 choices 。在逐個放置皇后的過程中,棋盤狀態在不斷地變化,每個時刻的棋盤就是狀態 state 。
下圖展示了本題的三個約束條件:多個皇后不能在同一行、同一列、同一條對角線上。值得注意的是,對角線分為主對角線 \ 和次對角線 / 兩種。
逐行放置策略
皇后的數量和棋盤的行數都為 n ,因此我們容易得到一個推論:棋盤每行都允許且只允許放置一個皇后。
也就是說,我們可以採取逐行放置策略:從第一行開始,在每行放置一個皇后,直至最後一行結束。
下圖所示為 4 皇后問題的逐行放置過程。受畫幅限制,下圖僅展開了第一行的其中一個搜尋分支,並且將不滿足列約束和對角線約束的方案都進行了剪枝。
從本質上看,逐行放置策略起到了剪枝的作用,它避免了同一行出現多個皇后的所有搜尋分支。
列與對角線剪枝
為了滿足列約束,我們可以利用一個長度為 n 的布林型陣列 cols 記錄每一列是否有皇后。在每次決定放置前,我們透過 cols 將已有皇后的列進行剪枝,並在回溯中動態更新 cols 的狀態。
那麼,如何處理對角線約束呢?設棋盤中某個格子的行列索引為 (row, col) ,選定矩陣中的某條主對角線,我們發現該對角線上所有格子的行索引減列索引都相等,即對角線上所有格子的 row - col 為恆定值。
也就是說,如果兩個格子滿足 row_1 - col_1 = row_2 - col_2 ,則它們一定處在同一條主對角線上。利用該規律,我們可以藉助下圖所示的陣列 diags1 記錄每條主對角線上是否有皇后。
同理,次對角線上的所有格子的 row + col 是恆定值。我們同樣也可以藉助陣列 diags2 來處理次對角線約束。
程式碼實現
請注意,n 維方陣中 row - col 的範圍是 [-n + 1, n - 1] ,row + col 的範圍是 [0, 2n - 2] ,所以主對角線和次對角線的數量都為 2n - 1 ,即陣列 diags1 和 diags2 的長度都為 2n - 1 。
[file]{n_queens}-[class]{}-[func]{n_queens}
逐行放置 n 次,考慮列約束,則從第一行到最後一行分別有 $n$、$n-1$、$\dots$、$2$、1 個選擇,使用 O(n!) 時間。當記錄解時,需要複製矩陣 state 並新增進 res ,複製操作使用 O(n^2) 時間。因此,總體時間複雜度為 $O(n! \cdot n^2)$ 。實際上,根據對角線約束的剪枝也能夠大幅縮小搜尋空間,因而搜尋效率往往優於以上時間複雜度。
陣列 state 使用 O(n^2) 空間,陣列 cols、diags1 和 diags2 皆使用 O(n) 空間。最大遞迴深度為 n ,使用 O(n) 堆疊幀空間。因此,空間複雜度為 $O(n^2)$ 。



