Files
Ikko Eltociear Ashimine 954c45864b docs: add Japanese translate documents (#1812)
* docs: add Japanese documents (`ja/docs`)

* docs: add Japanese documents (`ja/codes`)

* docs: add Japanese documents

* Remove pythontutor blocks in ja/

* Add an empty at the end of each markdown file.

* Add the missing figures (use the English version temporarily).

* Add index.md for Japanese version.

* Add index.html for Japanese version.

* Add missing index.assets

* Fix backtracking_algorithm.md for Japanese version.

* Add avatar_eltociear.jpg. Fix image links on the Japanese landing page.

* Add the Japanese banner.

---------

Co-authored-by: krahets <krahets@163.com>
2025-10-17 05:04:43 +08:00

23 lines
4.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# まとめ
- アルゴリズムは日常生活にありふれており、思っているほどアクセスしにくく複雑なものではありません。実際、私たちは既に無意識のうちに多くのアルゴリズムを学び、生活の様々な問題を解決するために使用しています。
- 辞書で単語を引く原理は二分探索アルゴリズムと一致しています。二分探索アルゴリズムは分割統治という重要なアルゴリズム概念を体現しています。
- トランプを整理する過程は挿入ソートアルゴリズムと非常に似ています。挿入ソートアルゴリズムは小さなデータセットのソートに適しています。
- 通貨でお釣りを計算するステップは本質的に貪欲アルゴリズムに従っており、各ステップでその時点での最良の選択をします。
- アルゴリズムは有限時間内で特定の問題を解決するための段階的な指示のセットですが、データ構造はコンピュータでのデータの組織化と保存方法を定義します。
- データ構造とアルゴリズムは密接に関連しています。データ構造はアルゴリズムの基礎であり、アルゴリズムはデータ構造の機能を活用するステージです。
- データ構造とアルゴリズムをブロックの組み立てに例えることができます。ブロックはデータを表し、ブロックの形状と接続方法はデータ構造を表し、ブロックを組み立てるステップはアルゴリズムに対応します。
### Q & A
**Q**:プログラマーとして、日常の仕事でアルゴリズムを手動で実装する必要があることはめったにありません。最も一般的に使用されるアルゴリズムは、既にプログラミング言語とライブラリに組み込まれており、すぐに使用できます。これは、私たちが仕事で遭遇する問題が、カスタムアルゴリズム設計を必要とする複雑さのレベルにまだ達していないことを示唆していますか?
特定の仕事スキルが武術の「技」のようなものだとすれば、基礎科目は「内功」のようなものです。
アルゴリズム(およびその他の基礎科目)を学ぶ意義は、必ずしも仕事でそれらを一から実装することではなく、概念の確固たる理解に基づいて、より専門的な意思決定と問題解決を可能にし、それによって仕事の全体的な質を向上させることだと私は信じています。例えば、すべてのプログラミング言語には組み込みのソート関数があります:
- データ構造とアルゴリズムを学んでいない場合、どんなデータが与えられても、このソート関数に渡すだけかもしれません。スムーズに動作し、良いパフォーマンスを示し、問題がないように見えます。
- しかし、アルゴリズムを学んだことがあれば、組み込みのソート関数の時間複雑度は通常$O(n \log n)$であることを理解しています。さらに、データが固定桁数の整数学生IDなどで構成されている場合、基数ソートのようなより効率的なアプローチを適用でき、時間複雑度をO(nk)に削減できます。ここでkは桁数です。大量のデータを処理する際、節約された時間は重要な価値に変わります — コストの削減、ユーザーエクスペリエンスの向上、システムパフォーマンスの向上。
エンジニアリングでは、多くの問題を最適に解決することは困難です。ほとんどは「準最適」解決策で対処されます。問題の難しさは、その固有の複雑さだけでなく、それに取り組む人の知識と経験にも依存します。専門知識と経験が深いほど、分析がより徹底的になり、問題をより優雅に解決できます。