mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			693 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			693 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # 二叉树
 | ||
| 
 | ||
| <u>二叉树(binary tree)</u>是一种非线性数据结构,代表“祖先”与“后代”之间的派生关系,体现了“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含值、左子节点引用和右子节点引用。
 | ||
| 
 | ||
| === "Python"
 | ||
| 
 | ||
|     ```python title=""
 | ||
|     class TreeNode:
 | ||
|         """二叉树节点类"""
 | ||
|         def __init__(self, val: int):
 | ||
|             self.val: int = val                # 节点值
 | ||
|             self.left: TreeNode | None = None  # 左子节点引用
 | ||
|             self.right: TreeNode | None = None # 右子节点引用
 | ||
|     ```
 | ||
| 
 | ||
| === "C++"
 | ||
| 
 | ||
|     ```cpp title=""
 | ||
|     /* 二叉树节点结构体 */
 | ||
|     struct TreeNode {
 | ||
|         int val;          // 节点值
 | ||
|         TreeNode *left;   // 左子节点指针
 | ||
|         TreeNode *right;  // 右子节点指针
 | ||
|         TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 | ||
|     };
 | ||
|     ```
 | ||
| 
 | ||
| === "Java"
 | ||
| 
 | ||
|     ```java title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode {
 | ||
|         int val;         // 节点值
 | ||
|         TreeNode left;   // 左子节点引用
 | ||
|         TreeNode right;  // 右子节点引用
 | ||
|         TreeNode(int x) { val = x; }
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "C#"
 | ||
| 
 | ||
|     ```csharp title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode(int? x) {
 | ||
|         public int? val = x;    // 节点值
 | ||
|         public TreeNode? left;  // 左子节点引用
 | ||
|         public TreeNode? right; // 右子节点引用
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "Go"
 | ||
| 
 | ||
|     ```go title=""
 | ||
|     /* 二叉树节点结构体 */
 | ||
|     type TreeNode struct {
 | ||
|         Val   int
 | ||
|         Left  *TreeNode
 | ||
|         Right *TreeNode
 | ||
|     }
 | ||
|     /* 构造方法 */
 | ||
|     func NewTreeNode(v int) *TreeNode {
 | ||
|         return &TreeNode{
 | ||
|             Left:  nil, // 左子节点指针
 | ||
|             Right: nil, // 右子节点指针
 | ||
|             Val:   v,   // 节点值
 | ||
|         }
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "Swift"
 | ||
| 
 | ||
|     ```swift title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode {
 | ||
|         var val: Int // 节点值
 | ||
|         var left: TreeNode? // 左子节点引用
 | ||
|         var right: TreeNode? // 右子节点引用
 | ||
| 
 | ||
|         init(x: Int) {
 | ||
|             val = x
 | ||
|         }
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "JS"
 | ||
| 
 | ||
|     ```javascript title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode {
 | ||
|         val; // 节点值
 | ||
|         left; // 左子节点指针
 | ||
|         right; // 右子节点指针
 | ||
|         constructor(val, left, right) {
 | ||
|             this.val = val === undefined ? 0 : val;
 | ||
|             this.left = left === undefined ? null : left;
 | ||
|             this.right = right === undefined ? null : right;
 | ||
|         }
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "TS"
 | ||
| 
 | ||
|     ```typescript title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode {
 | ||
|         val: number;
 | ||
|         left: TreeNode | null;
 | ||
|         right: TreeNode | null;
 | ||
| 
 | ||
|         constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 | ||
|             this.val = val === undefined ? 0 : val; // 节点值
 | ||
|             this.left = left === undefined ? null : left; // 左子节点引用
 | ||
|             this.right = right === undefined ? null : right; // 右子节点引用
 | ||
|         }
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "Dart"
 | ||
| 
 | ||
|     ```dart title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode {
 | ||
|       int val;         // 节点值
 | ||
|       TreeNode? left;  // 左子节点引用
 | ||
|       TreeNode? right; // 右子节点引用
 | ||
|       TreeNode(this.val, [this.left, this.right]);
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "Rust"
 | ||
| 
 | ||
|     ```rust title=""
 | ||
|     use std::rc::Rc;
 | ||
|     use std::cell::RefCell;
 | ||
| 
 | ||
|     /* 二叉树节点结构体 */
 | ||
|     struct TreeNode {
 | ||
|         val: i32,                               // 节点值
 | ||
|         left: Option<Rc<RefCell<TreeNode>>>,    // 左子节点引用
 | ||
|         right: Option<Rc<RefCell<TreeNode>>>,   // 右子节点引用
 | ||
|     }
 | ||
| 
 | ||
|     impl TreeNode {
 | ||
|         /* 构造方法 */
 | ||
|         fn new(val: i32) -> Rc<RefCell<Self>> {
 | ||
|             Rc::new(RefCell::new(Self {
 | ||
|                 val,
 | ||
|                 left: None,
 | ||
|                 right: None
 | ||
|             }))
 | ||
|         }
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "C"
 | ||
| 
 | ||
|     ```c title=""
 | ||
|     /* 二叉树节点结构体 */
 | ||
|     typedef struct TreeNode {
 | ||
|         int val;                // 节点值
 | ||
|         int height;             // 节点高度
 | ||
|         struct TreeNode *left;  // 左子节点指针
 | ||
|         struct TreeNode *right; // 右子节点指针
 | ||
|     } TreeNode;
 | ||
| 
 | ||
|     /* 构造函数 */
 | ||
|     TreeNode *newTreeNode(int val) {
 | ||
|         TreeNode *node;
 | ||
| 
 | ||
|         node = (TreeNode *)malloc(sizeof(TreeNode));
 | ||
|         node->val = val;
 | ||
|         node->height = 0;
 | ||
|         node->left = NULL;
 | ||
|         node->right = NULL;
 | ||
|         return node;
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "Kotlin"
 | ||
| 
 | ||
|     ```kotlin title=""
 | ||
|     /* 二叉树节点类 */
 | ||
|     class TreeNode(val _val: Int) {  // 节点值
 | ||
|         val left: TreeNode? = null   // 左子节点引用
 | ||
|         val right: TreeNode? = null  // 右子节点引用
 | ||
|     }
 | ||
|     ```
 | ||
| 
 | ||
| === "Ruby"
 | ||
| 
 | ||
|     ```ruby title=""
 | ||
|     ### 二叉树节点类 ###
 | ||
|     class TreeNode
 | ||
|       attr_accessor :val    # 节点值
 | ||
|       attr_accessor :left   # 左子节点引用
 | ||
|       attr_accessor :right  # 右子节点引用
 | ||
| 
 | ||
|       def initialize(val)
 | ||
|         @val = val
 | ||
|       end
 | ||
|     end
 | ||
|     ```
 | ||
| 
 | ||
| === "Zig"
 | ||
| 
 | ||
|     ```zig title=""
 | ||
| 
 | ||
|     ```
 | ||
| 
 | ||
| 每个节点都有两个引用(指针),分别指向<u>左子节点(left-child node)</u>和<u>右子节点(right-child node)</u>,该节点被称为这两个子节点的<u>父节点(parent node)</u>。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的<u>左子树(left subtree)</u>,同理可得<u>右子树(right subtree)</u>。
 | ||
| 
 | ||
| **在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树**。如下图所示,如果将“节点 2”视为父节点,则其左子节点和右子节点分别是“节点 4”和“节点 5”,左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| ## 二叉树常见术语
 | ||
| 
 | ||
| 二叉树的常用术语如下图所示。
 | ||
| 
 | ||
| - <u>根节点(root node)</u>:位于二叉树顶层的节点,没有父节点。
 | ||
| - <u>叶节点(leaf node)</u>:没有子节点的节点,其两个指针均指向 `None` 。
 | ||
| - <u>边(edge)</u>:连接两个节点的线段,即节点引用(指针)。
 | ||
| - 节点所在的<u>层(level)</u>:从顶至底递增,根节点所在层为 1 。
 | ||
| - 节点的<u>度(degree)</u>:节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
 | ||
| - 二叉树的<u>高度(height)</u>:从根节点到最远叶节点所经过的边的数量。
 | ||
| - 节点的<u>深度(depth)</u>:从根节点到该节点所经过的边的数量。
 | ||
| - 节点的<u>高度(height)</u>:从距离该节点最远的叶节点到该节点所经过的边的数量。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| !!! tip
 | ||
| 
 | ||
|     请注意,我们通常将“高度”和“深度”定义为“经过的边的数量”,但有些题目或教材可能会将其定义为“经过的节点的数量”。在这种情况下,高度和深度都需要加 1 。
 | ||
| 
 | ||
| ## 二叉树基本操作
 | ||
| 
 | ||
| ### 初始化二叉树
 | ||
| 
 | ||
| 与链表类似,首先初始化节点,然后构建引用(指针)。
 | ||
| 
 | ||
| === "Python"
 | ||
| 
 | ||
|     ```python title="binary_tree.py"
 | ||
|     # 初始化二叉树
 | ||
|     # 初始化节点
 | ||
|     n1 = TreeNode(val=1)
 | ||
|     n2 = TreeNode(val=2)
 | ||
|     n3 = TreeNode(val=3)
 | ||
|     n4 = TreeNode(val=4)
 | ||
|     n5 = TreeNode(val=5)
 | ||
|     # 构建节点之间的引用(指针)
 | ||
|     n1.left = n2
 | ||
|     n1.right = n3
 | ||
|     n2.left = n4
 | ||
|     n2.right = n5
 | ||
|     ```
 | ||
| 
 | ||
| === "C++"
 | ||
| 
 | ||
|     ```cpp title="binary_tree.cpp"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     TreeNode* n1 = new TreeNode(1);
 | ||
|     TreeNode* n2 = new TreeNode(2);
 | ||
|     TreeNode* n3 = new TreeNode(3);
 | ||
|     TreeNode* n4 = new TreeNode(4);
 | ||
|     TreeNode* n5 = new TreeNode(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1->left = n2;
 | ||
|     n1->right = n3;
 | ||
|     n2->left = n4;
 | ||
|     n2->right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "Java"
 | ||
| 
 | ||
|     ```java title="binary_tree.java"
 | ||
|     // 初始化节点
 | ||
|     TreeNode n1 = new TreeNode(1);
 | ||
|     TreeNode n2 = new TreeNode(2);
 | ||
|     TreeNode n3 = new TreeNode(3);
 | ||
|     TreeNode n4 = new TreeNode(4);
 | ||
|     TreeNode n5 = new TreeNode(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2;
 | ||
|     n1.right = n3;
 | ||
|     n2.left = n4;
 | ||
|     n2.right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "C#"
 | ||
| 
 | ||
|     ```csharp title="binary_tree.cs"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     TreeNode n1 = new(1);
 | ||
|     TreeNode n2 = new(2);
 | ||
|     TreeNode n3 = new(3);
 | ||
|     TreeNode n4 = new(4);
 | ||
|     TreeNode n5 = new(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2;
 | ||
|     n1.right = n3;
 | ||
|     n2.left = n4;
 | ||
|     n2.right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "Go"
 | ||
| 
 | ||
|     ```go title="binary_tree.go"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     n1 := NewTreeNode(1)
 | ||
|     n2 := NewTreeNode(2)
 | ||
|     n3 := NewTreeNode(3)
 | ||
|     n4 := NewTreeNode(4)
 | ||
|     n5 := NewTreeNode(5)
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.Left = n2
 | ||
|     n1.Right = n3
 | ||
|     n2.Left = n4
 | ||
|     n2.Right = n5
 | ||
|     ```
 | ||
| 
 | ||
| === "Swift"
 | ||
| 
 | ||
|     ```swift title="binary_tree.swift"
 | ||
|     // 初始化节点
 | ||
|     let n1 = TreeNode(x: 1)
 | ||
|     let n2 = TreeNode(x: 2)
 | ||
|     let n3 = TreeNode(x: 3)
 | ||
|     let n4 = TreeNode(x: 4)
 | ||
|     let n5 = TreeNode(x: 5)
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2
 | ||
|     n1.right = n3
 | ||
|     n2.left = n4
 | ||
|     n2.right = n5
 | ||
|     ```
 | ||
| 
 | ||
| === "JS"
 | ||
| 
 | ||
|     ```javascript title="binary_tree.js"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     let n1 = new TreeNode(1),
 | ||
|         n2 = new TreeNode(2),
 | ||
|         n3 = new TreeNode(3),
 | ||
|         n4 = new TreeNode(4),
 | ||
|         n5 = new TreeNode(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2;
 | ||
|     n1.right = n3;
 | ||
|     n2.left = n4;
 | ||
|     n2.right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "TS"
 | ||
| 
 | ||
|     ```typescript title="binary_tree.ts"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     let n1 = new TreeNode(1),
 | ||
|         n2 = new TreeNode(2),
 | ||
|         n3 = new TreeNode(3),
 | ||
|         n4 = new TreeNode(4),
 | ||
|         n5 = new TreeNode(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2;
 | ||
|     n1.right = n3;
 | ||
|     n2.left = n4;
 | ||
|     n2.right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "Dart"
 | ||
| 
 | ||
|     ```dart title="binary_tree.dart"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     TreeNode n1 = new TreeNode(1);
 | ||
|     TreeNode n2 = new TreeNode(2);
 | ||
|     TreeNode n3 = new TreeNode(3);
 | ||
|     TreeNode n4 = new TreeNode(4);
 | ||
|     TreeNode n5 = new TreeNode(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2;
 | ||
|     n1.right = n3;
 | ||
|     n2.left = n4;
 | ||
|     n2.right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "Rust"
 | ||
| 
 | ||
|     ```rust title="binary_tree.rs"
 | ||
|     // 初始化节点
 | ||
|     let n1 = TreeNode::new(1);
 | ||
|     let n2 = TreeNode::new(2);
 | ||
|     let n3 = TreeNode::new(3);
 | ||
|     let n4 = TreeNode::new(4);
 | ||
|     let n5 = TreeNode::new(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.borrow_mut().left = Some(n2.clone());
 | ||
|     n1.borrow_mut().right = Some(n3);
 | ||
|     n2.borrow_mut().left = Some(n4);
 | ||
|     n2.borrow_mut().right = Some(n5);
 | ||
|     ```
 | ||
| 
 | ||
| === "C"
 | ||
| 
 | ||
|     ```c title="binary_tree.c"
 | ||
|     /* 初始化二叉树 */
 | ||
|     // 初始化节点
 | ||
|     TreeNode *n1 = newTreeNode(1);
 | ||
|     TreeNode *n2 = newTreeNode(2);
 | ||
|     TreeNode *n3 = newTreeNode(3);
 | ||
|     TreeNode *n4 = newTreeNode(4);
 | ||
|     TreeNode *n5 = newTreeNode(5);
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1->left = n2;
 | ||
|     n1->right = n3;
 | ||
|     n2->left = n4;
 | ||
|     n2->right = n5;
 | ||
|     ```
 | ||
| 
 | ||
| === "Kotlin"
 | ||
| 
 | ||
|     ```kotlin title="binary_tree.kt"
 | ||
|     // 初始化节点
 | ||
|     val n1 = TreeNode(1)
 | ||
|     val n2 = TreeNode(2)
 | ||
|     val n3 = TreeNode(3)
 | ||
|     val n4 = TreeNode(4)
 | ||
|     val n5 = TreeNode(5)
 | ||
|     // 构建节点之间的引用(指针)
 | ||
|     n1.left = n2
 | ||
|     n1.right = n3
 | ||
|     n2.left = n4
 | ||
|     n2.right = n5
 | ||
|     ```
 | ||
| 
 | ||
| === "Ruby"
 | ||
| 
 | ||
|     ```ruby title="binary_tree.rb"
 | ||
|     # 初始化二叉树
 | ||
|     # 初始化节点
 | ||
|     n1 = TreeNode.new(1)
 | ||
|     n2 = TreeNode.new(2)
 | ||
|     n3 = TreeNode.new(3)
 | ||
|     n4 = TreeNode.new(4)
 | ||
|     n5 = TreeNode.new(5)
 | ||
|     # 构建节点之间的引用(指针)
 | ||
|     n1.left = n2
 | ||
|     n1.right = n3
 | ||
|     n2.left = n4
 | ||
|     n2.right = n5
 | ||
|     ```
 | ||
| 
 | ||
| === "Zig"
 | ||
| 
 | ||
|     ```zig title="binary_tree.zig"
 | ||
| 
 | ||
|     ```
 | ||
| 
 | ||
| ??? pythontutor "可视化运行"
 | ||
| 
 | ||
|     https://pythontutor.com/render.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E8%8A%82%E7%82%B9%0A%20%20%20%20n1%20%3D%20TreeNode%28val%3D1%29%0A%20%20%20%20n2%20%3D%20TreeNode%28val%3D2%29%0A%20%20%20%20n3%20%3D%20TreeNode%28val%3D3%29%0A%20%20%20%20n4%20%3D%20TreeNode%28val%3D4%29%0A%20%20%20%20n5%20%3D%20TreeNode%28val%3D5%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%EF%BC%88%E6%8C%87%E9%92%88%EF%BC%89%0A%20%20%20%20n1.left%20%3D%20n2%0A%20%20%20%20n1.right%20%3D%20n3%0A%20%20%20%20n2.left%20%3D%20n4%0A%20%20%20%20n2.right%20%3D%20n5&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
 | ||
| 
 | ||
| ### 插入与删除节点
 | ||
| 
 | ||
| 与链表类似,在二叉树中插入与删除节点可以通过修改指针来实现。下图给出了一个示例。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| === "Python"
 | ||
| 
 | ||
|     ```python title="binary_tree.py"
 | ||
|     # 插入与删除节点
 | ||
|     p = TreeNode(0)
 | ||
|     # 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = p
 | ||
|     p.left = n2
 | ||
|     # 删除节点 P
 | ||
|     n1.left = n2
 | ||
|     ```
 | ||
| 
 | ||
| === "C++"
 | ||
| 
 | ||
|     ```cpp title="binary_tree.cpp"
 | ||
|     /* 插入与删除节点 */
 | ||
|     TreeNode* P = new TreeNode(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1->left = P;
 | ||
|     P->left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1->left = n2;
 | ||
|     // 释放内存
 | ||
|     delete P;
 | ||
|     ```
 | ||
| 
 | ||
| === "Java"
 | ||
| 
 | ||
|     ```java title="binary_tree.java"
 | ||
|     TreeNode P = new TreeNode(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P;
 | ||
|     P.left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2;
 | ||
|     ```
 | ||
| 
 | ||
| === "C#"
 | ||
| 
 | ||
|     ```csharp title="binary_tree.cs"
 | ||
|     /* 插入与删除节点 */
 | ||
|     TreeNode P = new(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P;
 | ||
|     P.left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2;
 | ||
|     ```
 | ||
| 
 | ||
| === "Go"
 | ||
| 
 | ||
|     ```go title="binary_tree.go"
 | ||
|     /* 插入与删除节点 */
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     p := NewTreeNode(0)
 | ||
|     n1.Left = p
 | ||
|     p.Left = n2
 | ||
|     // 删除节点 P
 | ||
|     n1.Left = n2
 | ||
|     ```
 | ||
| 
 | ||
| === "Swift"
 | ||
| 
 | ||
|     ```swift title="binary_tree.swift"
 | ||
|     let P = TreeNode(x: 0)
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P
 | ||
|     P.left = n2
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2
 | ||
|     ```
 | ||
| 
 | ||
| === "JS"
 | ||
| 
 | ||
|     ```javascript title="binary_tree.js"
 | ||
|     /* 插入与删除节点 */
 | ||
|     let P = new TreeNode(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P;
 | ||
|     P.left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2;
 | ||
|     ```
 | ||
| 
 | ||
| === "TS"
 | ||
| 
 | ||
|     ```typescript title="binary_tree.ts"
 | ||
|     /* 插入与删除节点 */
 | ||
|     const P = new TreeNode(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P;
 | ||
|     P.left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2;
 | ||
|     ```
 | ||
| 
 | ||
| === "Dart"
 | ||
| 
 | ||
|     ```dart title="binary_tree.dart"
 | ||
|     /* 插入与删除节点 */
 | ||
|     TreeNode P = new TreeNode(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P;
 | ||
|     P.left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2;
 | ||
|     ```
 | ||
| 
 | ||
| === "Rust"
 | ||
| 
 | ||
|     ```rust title="binary_tree.rs"
 | ||
|     let p = TreeNode::new(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.borrow_mut().left = Some(p.clone());
 | ||
|     p.borrow_mut().left = Some(n2.clone());
 | ||
|     // 删除节点 p
 | ||
|     n1.borrow_mut().left = Some(n2);
 | ||
|     ```
 | ||
| 
 | ||
| === "C"
 | ||
| 
 | ||
|     ```c title="binary_tree.c"
 | ||
|     /* 插入与删除节点 */
 | ||
|     TreeNode *P = newTreeNode(0);
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1->left = P;
 | ||
|     P->left = n2;
 | ||
|     // 删除节点 P
 | ||
|     n1->left = n2;
 | ||
|     // 释放内存
 | ||
|     free(P);
 | ||
|     ```
 | ||
| 
 | ||
| === "Kotlin"
 | ||
| 
 | ||
|     ```kotlin title="binary_tree.kt"
 | ||
|     val P = TreeNode(0)
 | ||
|     // 在 n1 -> n2 中间插入节点 P
 | ||
|     n1.left = P
 | ||
|     P.left = n2
 | ||
|     // 删除节点 P
 | ||
|     n1.left = n2
 | ||
|     ```
 | ||
| 
 | ||
| === "Ruby"
 | ||
| 
 | ||
|     ```ruby title="binary_tree.rb"
 | ||
|     # 插入与删除节点
 | ||
|     _p = TreeNode.new(0)
 | ||
|     # 在 n1 -> n2 中间插入节点 _p
 | ||
|     n1.left = _p
 | ||
|     _p.left = n2
 | ||
|     # 删除节点
 | ||
|     n1.left = n2
 | ||
|     ```
 | ||
| 
 | ||
| === "Zig"
 | ||
| 
 | ||
|     ```zig title="binary_tree.zig"
 | ||
| 
 | ||
|     ```
 | ||
| 
 | ||
| ??? pythontutor "可视化运行"
 | ||
| 
 | ||
|     https://pythontutor.com/render.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E8%8A%82%E7%82%B9%0A%20%20%20%20n1%20%3D%20TreeNode%28val%3D1%29%0A%20%20%20%20n2%20%3D%20TreeNode%28val%3D2%29%0A%20%20%20%20n3%20%3D%20TreeNode%28val%3D3%29%0A%20%20%20%20n4%20%3D%20TreeNode%28val%3D4%29%0A%20%20%20%20n5%20%3D%20TreeNode%28val%3D5%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%EF%BC%88%E6%8C%87%E9%92%88%EF%BC%89%0A%20%20%20%20n1.left%20%3D%20n2%0A%20%20%20%20n1.right%20%3D%20n3%0A%20%20%20%20n2.left%20%3D%20n4%0A%20%20%20%20n2.right%20%3D%20n5%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%B8%8E%E5%88%A0%E9%99%A4%E8%8A%82%E7%82%B9%0A%20%20%20%20p%20%3D%20TreeNode%280%29%0A%20%20%20%20%23%20%E5%9C%A8%20n1%20-%3E%20n2%20%E4%B8%AD%E9%97%B4%E6%8F%92%E5%85%A5%E8%8A%82%E7%82%B9%20P%0A%20%20%20%20n1.left%20%3D%20p%0A%20%20%20%20p.left%20%3D%20n2%0A%20%20%20%20%23%20%E5%88%A0%E9%99%A4%E8%8A%82%E7%82%B9%20P%0A%20%20%20%20n1.left%20%3D%20n2&cumulative=false&curInstr=37&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
 | ||
| 
 | ||
| !!! tip
 | ||
| 
 | ||
|     需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除通常是由一套操作配合完成的,以实现有实际意义的操作。
 | ||
| 
 | ||
| ## 常见二叉树类型
 | ||
| 
 | ||
| ### 完美二叉树
 | ||
| 
 | ||
| 如下图所示,<u>完美二叉树(perfect binary tree)</u>所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 $0$ ,其余所有节点的度都为 $2$ ;若树的高度为 $h$ ,则节点总数为 $2^{h+1} - 1$ ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。
 | ||
| 
 | ||
| !!! tip
 | ||
| 
 | ||
|     请注意,在中文社区中,完美二叉树常被称为<u>满二叉树</u>。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| ### 完全二叉树
 | ||
| 
 | ||
| 如下图所示,<u>完全二叉树(complete binary tree)</u>仅允许最底层的节点不完全填满,且最底层的节点必须从左至右依次连续填充。请注意,完美二叉树也是一棵完全二叉树。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| ### 完满二叉树
 | ||
| 
 | ||
| 如下图所示,<u>完满二叉树(full binary tree)</u>除了叶节点之外,其余所有节点都有两个子节点。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| ### 平衡二叉树
 | ||
| 
 | ||
| 如下图所示,<u>平衡二叉树(balanced binary tree)</u>中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| ## 二叉树的退化
 | ||
| 
 | ||
| 下图展示了二叉树的理想结构与退化结构。当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。
 | ||
| 
 | ||
| - 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。
 | ||
| - 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 $O(n)$ 。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 如下表所示,在最佳结构和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大值或极小值。
 | ||
| 
 | ||
| <p align="center"> 表 <id>   二叉树的最佳结构与最差结构 </p>
 | ||
| 
 | ||
| |                             | 完美二叉树         | 链表    |
 | ||
| | --------------------------- | ------------------ | ------- |
 | ||
| | 第 $i$ 层的节点数量         | $2^{i-1}$          | $1$     |
 | ||
| | 高度为 $h$ 的树的叶节点数量 | $2^h$              | $1$     |
 | ||
| | 高度为 $h$ 的树的节点总数   | $2^{h+1} - 1$      | $h + 1$ |
 | ||
| | 节点总数为 $n$ 的树的高度   | $\log_2 (n+1) - 1$ | $n - 1$ |
 | 
