mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 d85a3bb74d
			
		
	
	d85a3bb74d
	
	
	
		
			
			* Revised the figures thoughout the book. * Utilize roboto and roboto mono as the font faimly of the English edition * Fix the naming style * Update two figures. * Fix margin of the hero image * Fix margin of the hero image
		
			
				
	
	
		
			75 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # 建堆操作
 | |
| 
 | |
| 在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。
 | |
| 
 | |
| ## 借助入堆操作实现
 | |
| 
 | |
| 我们首先创建一个空堆,然后遍历列表,依次对每个元素执行“入堆操作”,即先将元素添加至堆的尾部,再对该元素执行“从底至顶”堆化。
 | |
| 
 | |
| 每当一个元素入堆,堆的长度就加一。由于节点是从顶到底依次被添加进二叉树的,因此堆是“自上而下”构建的。
 | |
| 
 | |
| 设元素数量为 $n$ ,每个元素的入堆操作使用 $O(\log{n})$ 时间,因此该建堆方法的时间复杂度为 $O(n \log n)$ 。
 | |
| 
 | |
| ## 通过遍历堆化实现
 | |
| 
 | |
| 实际上,我们可以实现一种更为高效的建堆方法,共分为两步。
 | |
| 
 | |
| 1. 将列表所有元素原封不动地添加到堆中,此时堆的性质尚未得到满足。
 | |
| 2. 倒序遍历堆(层序遍历的倒序),依次对每个非叶节点执行“从顶至底堆化”。
 | |
| 
 | |
| **每当堆化一个节点后,以该节点为根节点的子树就形成一个合法的子堆**。而由于是倒序遍历,因此堆是“自下而上”构建的。
 | |
| 
 | |
| 之所以选择倒序遍历,是因为这样能够保证当前节点之下的子树已经是合法的子堆,这样堆化当前节点才是有效的。
 | |
| 
 | |
| 值得说明的是,**由于叶节点没有子节点,因此它们天然就是合法的子堆,无须堆化**。如以下代码所示,最后一个非叶节点是最后一个节点的父节点,我们从它开始倒序遍历并执行堆化:
 | |
| 
 | |
| ```src
 | |
| [file]{my_heap}-[class]{max_heap}-[func]{__init__}
 | |
| ```
 | |
| 
 | |
| ## 复杂度分析
 | |
| 
 | |
| 下面,我们来尝试推算第二种建堆方法的时间复杂度。
 | |
| 
 | |
| - 假设完全二叉树的节点数量为 $n$ ,则叶节点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此需要堆化的节点数量为 $(n - 1) / 2$ 。
 | |
| - 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 $\log n$ 。
 | |
| 
 | |
| 将上述两者相乘,可得到建堆过程的时间复杂度为 $O(n \log n)$ 。**但这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的性质**。
 | |
| 
 | |
| 接下来我们来进行更为准确的计算。为了降低计算难度,假设给定一个节点数量为 $n$ 、高度为 $h$ 的“完美二叉树”,该假设不会影响计算结果的正确性。
 | |
| 
 | |
| 
 | |
| 
 | |
| 如上图所示,节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。因此,我们可以对各层的“节点数量 $\times$ 节点高度”求和,**得到所有节点的堆化迭代次数的总和**。
 | |
| 
 | |
| $$
 | |
| T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
 | |
| $$
 | |
| 
 | |
| 化简上式需要借助中学的数列知识,先将 $T(h)$ 乘以 $2$ ,得到:
 | |
| 
 | |
| $$
 | |
| \begin{aligned}
 | |
| T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline
 | |
| 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline
 | |
| \end{aligned}
 | |
| $$
 | |
| 
 | |
| 使用错位相减法,用下式 $2 T(h)$ 减去上式 $T(h)$ ,可得:
 | |
| 
 | |
| $$
 | |
| 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h
 | |
| $$
 | |
| 
 | |
| 观察上式,发现 $T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为:
 | |
| 
 | |
| $$
 | |
| \begin{aligned}
 | |
| T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
 | |
| & = 2^{h+1} - h - 2 \newline
 | |
| & = O(2^h)
 | |
| \end{aligned}
 | |
| $$
 | |
| 
 | |
| 进一步,高度为 $h$ 的完美二叉树的节点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$ 。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。
 |