mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			567 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			567 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# 二叉树
 | 
						||
 | 
						||
「二叉树 Binary Tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含一个「值」和两个「指针」。
 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title=""
 | 
						||
    /* 二叉树节点类 */
 | 
						||
    class TreeNode {
 | 
						||
        int val;         // 节点值
 | 
						||
        TreeNode left;   // 左子节点指针
 | 
						||
        TreeNode right;  // 右子节点指针
 | 
						||
        TreeNode(int x) { val = x; }
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title=""
 | 
						||
    /* 二叉树节点结构体 */
 | 
						||
    struct TreeNode {
 | 
						||
        int val;          // 节点值
 | 
						||
        TreeNode *left;   // 左子节点指针
 | 
						||
        TreeNode *right;  // 右子节点指针
 | 
						||
        TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 | 
						||
    };
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title=""
 | 
						||
    class TreeNode:
 | 
						||
        """二叉树节点类"""
 | 
						||
        def __init__(self, val: int):
 | 
						||
            self.val: int = val                   # 节点值
 | 
						||
            self.left: Optional[TreeNode] = None  # 左子节点指针
 | 
						||
            self.right: Optional[TreeNode] = None # 右子节点指针
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title=""
 | 
						||
    /* 二叉树节点结构体 */
 | 
						||
    type TreeNode struct {
 | 
						||
        Val   int
 | 
						||
        Left  *TreeNode
 | 
						||
        Right *TreeNode
 | 
						||
    }
 | 
						||
    /* 节点初始化方法 */
 | 
						||
    func NewTreeNode(v int) *TreeNode {
 | 
						||
        return &TreeNode{
 | 
						||
            Left:  nil,
 | 
						||
            Right: nil,
 | 
						||
            Val:   v,
 | 
						||
        }
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```javascript title=""
 | 
						||
    /* 二叉树节点类 */
 | 
						||
    function TreeNode(val, left, right) {
 | 
						||
        this.val = (val === undefined ? 0 : val); // 节点值
 | 
						||
        this.left = (left === undefined ? null : left); // 左子节点指针
 | 
						||
        this.right = (right === undefined ? null : right); // 右子节点指针
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title=""
 | 
						||
    /* 二叉树节点类 */
 | 
						||
    class TreeNode {
 | 
						||
        val: number;
 | 
						||
        left: TreeNode | null;
 | 
						||
        right: TreeNode | null;
 | 
						||
    
 | 
						||
        constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 | 
						||
            this.val = val === undefined ? 0 : val; // 节点值
 | 
						||
            this.left = left === undefined ? null : left; // 左子节点指针
 | 
						||
            this.right = right === undefined ? null : right; // 右子节点指针
 | 
						||
        }
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title=""
 | 
						||
    
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title=""
 | 
						||
    /* 二叉树节点类 */
 | 
						||
    class TreeNode {
 | 
						||
        int val;          // 节点值
 | 
						||
        TreeNode? left;   // 左子节点指针
 | 
						||
        TreeNode? right;  // 右子节点指针
 | 
						||
        TreeNode(int x) { val = x; }
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Swift"
 | 
						||
 | 
						||
    ```swift title=""
 | 
						||
    /* 二叉树节点类 */
 | 
						||
    class TreeNode {
 | 
						||
        var val: Int // 节点值
 | 
						||
        var left: TreeNode? // 左子节点指针
 | 
						||
        var right: TreeNode? // 右子节点指针
 | 
						||
 | 
						||
        init(x: Int) {
 | 
						||
            val = x
 | 
						||
        }
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Zig"
 | 
						||
 | 
						||
    ```zig title=""
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
节点的两个指针分别指向「左子节点」和「右子节点」,同时该节点被称为这两个子节点的「父节点」。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的「左子树」,同理可得「右子树」。
 | 
						||
 | 
						||
**在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树**。例如,在以下示例中,若将“节点 2”视为父节点,则其左子节点和右子节点分别是“节点 4”和“节点 5”,左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
## 二叉树常见术语
 | 
						||
 | 
						||
二叉树涉及的术语较多,建议尽量理解并记住。
 | 
						||
 | 
						||
- 「根节点 Root Node」:位于二叉树顶层的节点,没有父节点;
 | 
						||
- 「叶节点 Leaf Node」:没有子节点的节点,其两个指针均指向 $\text{null}$ ;
 | 
						||
- 节点的「层 Level」:从顶至底递增,根节点所在层为 1 ;
 | 
						||
- 节点的「度 Degree」:节点的子节点的数量。在二叉树中,度的范围是 0, 1, 2 ;
 | 
						||
- 「边 Edge」:连接两个节点的线段,即节点指针;
 | 
						||
- 二叉树的「高度」:从根节点到最远叶节点所经过的边的数量;
 | 
						||
- 节点的「深度 Depth」 :从根节点到该节点所经过的边的数量;
 | 
						||
- 节点的「高度 Height」:从最远叶节点到该节点所经过的边的数量;
 | 
						||
 | 
						||

 | 
						||
 | 
						||
!!! tip "高度与深度的定义"
 | 
						||
 | 
						||
    请注意,我们通常将「高度」和「深度」定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。
 | 
						||
 | 
						||
## 二叉树基本操作
 | 
						||
 | 
						||
**初始化二叉树**。与链表类似,首先初始化节点,然后构建引用指向(即指针)。
 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title="binary_tree.java"
 | 
						||
    // 初始化节点
 | 
						||
    TreeNode n1 = new TreeNode(1);
 | 
						||
    TreeNode n2 = new TreeNode(2);
 | 
						||
    TreeNode n3 = new TreeNode(3);
 | 
						||
    TreeNode n4 = new TreeNode(4);
 | 
						||
    TreeNode n5 = new TreeNode(5);
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1.left = n2;
 | 
						||
    n1.right = n3;
 | 
						||
    n2.left = n4;
 | 
						||
    n2.right = n5;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title="binary_tree.cpp"
 | 
						||
    /* 初始化二叉树 */
 | 
						||
    // 初始化节点
 | 
						||
    TreeNode* n1 = new TreeNode(1);
 | 
						||
    TreeNode* n2 = new TreeNode(2);
 | 
						||
    TreeNode* n3 = new TreeNode(3);
 | 
						||
    TreeNode* n4 = new TreeNode(4);
 | 
						||
    TreeNode* n5 = new TreeNode(5);
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1->left = n2;
 | 
						||
    n1->right = n3;
 | 
						||
    n2->left = n4;
 | 
						||
    n2->right = n5;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title="binary_tree.py"
 | 
						||
    # 初始化二叉树
 | 
						||
    # 初始化节点
 | 
						||
    n1 = TreeNode(val=1)
 | 
						||
    n2 = TreeNode(val=2)
 | 
						||
    n3 = TreeNode(val=3)
 | 
						||
    n4 = TreeNode(val=4)
 | 
						||
    n5 = TreeNode(val=5)
 | 
						||
    # 构建引用指向(即指针)
 | 
						||
    n1.left = n2
 | 
						||
    n1.right = n3
 | 
						||
    n2.left = n4
 | 
						||
    n2.right = n5
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title="binary_tree.go"
 | 
						||
    /* 初始化二叉树 */
 | 
						||
    // 初始化节点
 | 
						||
    n1 := NewTreeNode(1)
 | 
						||
    n2 := NewTreeNode(2)
 | 
						||
    n3 := NewTreeNode(3)
 | 
						||
    n4 := NewTreeNode(4)
 | 
						||
    n5 := NewTreeNode(5)
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1.Left = n2
 | 
						||
    n1.Right = n3
 | 
						||
    n2.Left = n4
 | 
						||
    n2.Right = n5
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```javascript title="binary_tree.js"
 | 
						||
    /* 初始化二叉树 */
 | 
						||
    // 初始化节点
 | 
						||
    let n1 = new TreeNode(1),
 | 
						||
        n2 = new TreeNode(2),
 | 
						||
        n3 = new TreeNode(3),
 | 
						||
        n4 = new TreeNode(4),
 | 
						||
        n5 = new TreeNode(5);
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1.left = n2;
 | 
						||
    n1.right = n3;
 | 
						||
    n2.left = n4;
 | 
						||
    n2.right = n5;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title="binary_tree.ts"
 | 
						||
    /* 初始化二叉树 */
 | 
						||
    // 初始化节点
 | 
						||
    let n1 = new TreeNode(1),
 | 
						||
        n2 = new TreeNode(2),
 | 
						||
        n3 = new TreeNode(3),
 | 
						||
        n4 = new TreeNode(4),
 | 
						||
        n5 = new TreeNode(5);
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1.left = n2;
 | 
						||
    n1.right = n3;
 | 
						||
    n2.left = n4;
 | 
						||
    n2.right = n5;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title="binary_tree.c"
 | 
						||
    
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title="binary_tree.cs"
 | 
						||
    /* 初始化二叉树 */
 | 
						||
    // 初始化节点
 | 
						||
    TreeNode n1 = new TreeNode(1);
 | 
						||
    TreeNode n2 = new TreeNode(2);
 | 
						||
    TreeNode n3 = new TreeNode(3);
 | 
						||
    TreeNode n4 = new TreeNode(4);
 | 
						||
    TreeNode n5 = new TreeNode(5);
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1.left = n2;
 | 
						||
    n1.right = n3;
 | 
						||
    n2.left = n4;
 | 
						||
    n2.right = n5;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Swift"
 | 
						||
 | 
						||
    ```swift title="binary_tree.swift"
 | 
						||
    // 初始化节点
 | 
						||
    let n1 = TreeNode(x: 1)
 | 
						||
    let n2 = TreeNode(x: 2)
 | 
						||
    let n3 = TreeNode(x: 3)
 | 
						||
    let n4 = TreeNode(x: 4)
 | 
						||
    let n5 = TreeNode(x: 5)
 | 
						||
    // 构建引用指向(即指针)
 | 
						||
    n1.left = n2
 | 
						||
    n1.right = n3
 | 
						||
    n2.left = n4
 | 
						||
    n2.right = n5
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Zig"
 | 
						||
 | 
						||
    ```zig title="binary_tree.zig"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
**插入与删除节点**。与链表类似,通过修改指针来实现插入与删除节点。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title="binary_tree.java"
 | 
						||
    TreeNode P = new TreeNode(0);
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1.left = P;
 | 
						||
    P.left = n2;
 | 
						||
    // 删除节点 P
 | 
						||
    n1.left = n2;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title="binary_tree.cpp"
 | 
						||
    /* 插入与删除节点 */
 | 
						||
    TreeNode* P = new TreeNode(0);
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1->left = P;
 | 
						||
    P->left = n2;
 | 
						||
    // 删除节点 P
 | 
						||
    n1->left = n2;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title="binary_tree.py"
 | 
						||
    # 插入与删除节点
 | 
						||
    p = TreeNode(0)
 | 
						||
    # 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1.left = p
 | 
						||
    p.left = n2
 | 
						||
    # 删除节点 P
 | 
						||
    n1.left = n2
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title="binary_tree.go"
 | 
						||
    /* 插入与删除节点 */
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    p := NewTreeNode(0)
 | 
						||
    n1.Left = p
 | 
						||
    p.Left = n2
 | 
						||
    // 删除节点 P
 | 
						||
    n1.Left = n2
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```javascript title="binary_tree.js"
 | 
						||
    /* 插入与删除节点 */
 | 
						||
    let P = new TreeNode(0);
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1.left = P;
 | 
						||
    P.left = n2;
 | 
						||
    // 删除节点 P
 | 
						||
    n1.left = n2;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title="binary_tree.ts"
 | 
						||
    /* 插入与删除节点 */
 | 
						||
    const P = new TreeNode(0);
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1.left = P;
 | 
						||
    P.left = n2;
 | 
						||
    // 删除节点 P
 | 
						||
    n1.left = n2;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title="binary_tree.c"
 | 
						||
    
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title="binary_tree.cs"
 | 
						||
    /* 插入与删除节点 */
 | 
						||
    TreeNode P = new TreeNode(0);
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1.left = P;
 | 
						||
    P.left = n2;
 | 
						||
    // 删除节点 P
 | 
						||
    n1.left = n2;
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Swift"
 | 
						||
 | 
						||
    ```swift title="binary_tree.swift"
 | 
						||
    let P = TreeNode(x: 0)
 | 
						||
    // 在 n1 -> n2 中间插入节点 P
 | 
						||
    n1.left = P
 | 
						||
    P.left = n2
 | 
						||
    // 删除节点 P
 | 
						||
    n1.left = n2
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Zig"
 | 
						||
 | 
						||
    ```zig title="binary_tree.zig"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
!!! note
 | 
						||
 | 
						||
    需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除操作通常是由一套操作配合完成的,以实现有实际意义的操作。
 | 
						||
 | 
						||
## 常见二叉树类型
 | 
						||
 | 
						||
### 完美二叉树
 | 
						||
 | 
						||
「完美二叉树 Perfect Binary Tree」除了最底层外,其余所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 $0$ ,其余所有节点的度都为 $2$ ;若树高度为 $h$ ,则节点总数为 $2^{h+1} - 1$ ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。
 | 
						||
 | 
						||
!!! tip
 | 
						||
 | 
						||
    在中文社区中,完美二叉树常被称为「满二叉树」,请注意区分。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
### 完全二叉树
 | 
						||
 | 
						||
「完全二叉树 Complete Binary Tree」只有最底层的节点未被填满,且最底层节点尽量靠左填充。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
### 完满二叉树
 | 
						||
 | 
						||
「完满二叉树 Full Binary Tree」除了叶节点之外,其余所有节点都有两个子节点。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
### 平衡二叉树
 | 
						||
 | 
						||
「平衡二叉树 Balanced Binary Tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
## 二叉树的退化
 | 
						||
 | 
						||
当二叉树的每层节点都被填满时,达到「完美二叉树」;而当所有节点都偏向一侧时,二叉树退化为「链表」。
 | 
						||
 | 
						||
- 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势;
 | 
						||
- 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 $O(n)$ ;
 | 
						||
 | 
						||

 | 
						||
 | 
						||
如下表所示,在最佳和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大或极小值。
 | 
						||
 | 
						||
<div class="center-table" markdown>
 | 
						||
 | 
						||
|                               | 完美二叉树 | 链表         |
 | 
						||
| ----------------------------- | ---------- | ---------- |
 | 
						||
| 第 $i$ 层的节点数量    | $2^{i-1}$          | $1$     |
 | 
						||
| 树的高度为 $h$ 时的叶节点数量 | $2^h$          | $1$     |
 | 
						||
| 树的高度为 $h$ 时的节点总数 | $2^{h+1} - 1$      | $h + 1$     |
 | 
						||
| 树的节点总数为 $n$ 时的高度 | $\log_2 (n+1) - 1$ | $n - 1$     |
 | 
						||
 | 
						||
</div>
 | 
						||
 | 
						||
## 二叉树表示方式 *
 | 
						||
 | 
						||
我们通常使用二叉树的「链表表示」,即存储单位为节点 `TreeNode` ,节点之间通过指针相连接。本文前述示例代码展示了二叉树在链表表示下的各项基本操作。
 | 
						||
 | 
						||
那么,能否用「数组」来表示二叉树呢?答案是肯定的。先来分析一个简单案例,给定一个「完美二叉树」,将节点按照层序遍历的顺序编号(从 0 开始),那么可以推导得出父节点索引与子节点索引之间的“映射公式”:**若节点的索引为 $i$ ,则该节点的左子节点索引为 $2i + 1$ ,右子节点索引为 $2i + 2$** 。
 | 
						||
 | 
						||
**本质上,映射公式的作用相当于链表中的指针**。对于层序遍历序列中的任意节点,我们都可以使用映射公式来访问其子节点。因此,我们可以将二叉树的层序遍历序列存储到数组中,利用以上映射公式来表示二叉树。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
然而,完美二叉树只是一个特例。在二叉树的中间层,通常存在许多 $\text{null}$ ,而层序遍历序列并不包含这些 $\text{null}$ 。我们无法仅凭序列来推测空节点的数量和分布位置,**这意味着理论上存在许多种二叉树都符合该层序遍历序列**。显然,在这种情况下,我们无法使用数组来存储二叉树。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
为了解决这个问题,我们可以考虑按照完美二叉树的形式来表示所有二叉树,**并在序列中使用特殊符号来显式地表示 $\text{null}$**。如下图所示,这样处理后,层序遍历序列就可以唯一表示二叉树了。
 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 使用 int 的包装类 Integer ,就可以使用 null 来标记空位
 | 
						||
    Integer[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 为了符合数据类型为 int ,使用 int 最大值标记空位
 | 
						||
    // 该方法的使用前提是没有节点的值 = INT_MAX
 | 
						||
    vector<int> tree = { 1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15 };
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title=""
 | 
						||
    # 二叉树的数组表示
 | 
						||
    # 直接使用 None 来表示空位
 | 
						||
    tree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 使用 any 类型的切片, 就可以使用 nil 来标记空位
 | 
						||
    tree := []any{1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15}
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```javascript title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 直接使用 null 来表示空位
 | 
						||
    let tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 直接使用 null 来表示空位
 | 
						||
    let tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title=""
 | 
						||
    
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 使用 int? 可空类型 ,就可以使用 null 来标记空位
 | 
						||
    int?[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Swift"
 | 
						||
 | 
						||
    ```swift title=""
 | 
						||
    /* 二叉树的数组表示 */
 | 
						||
    // 使用 Int? 可空类型 ,就可以使用 nil 来标记空位
 | 
						||
    let tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Zig"
 | 
						||
 | 
						||
    ```zig title=""
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||

 | 
						||
 | 
						||
**完全二叉树非常适合使用数组来表示**。回顾「完全二叉树」的定义,$\text{null}$ 只出现在最底层,并且最底层的节点尽量靠左。这意味着,**所有空节点一定出现在层序遍历序列的末尾**。由于我们事先知道了所有 $\text{null}$ 的位置,因此在使用数组表示完全二叉树时,可以省略存储它们。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
数组表示具有两个显著优点:首先,它不需要存储指针,从而节省了空间;其次,它允许随机访问节点。然而,当二叉树中存在大量 $\text{null}$ 时,数组中包含的节点数据比重较低,导致有效空间利用率降低。
 |