mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
comments: true
 | 
						||
---
 | 
						||
 | 
						||
# 哈希表
 | 
						||
 | 
						||
哈希表通过建立「键 key」和「值 value」之间的映射,实现高效的元素查找。具体地,输入一个 key ,在哈希表中查询并获取 value ,时间复杂度为 $O(1)$ 。
 | 
						||
 | 
						||
例如,给定一个包含 $n$ 个学生的数据库,每个学生有 "姓名 `name` ” 和 “学号 `id` ” 两项数据,希望实现一个查询功能:**输入一个学号,返回对应的姓名**,则可以使用哈希表实现。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
<p align="center"> Fig. 哈希表抽象表示 </p>
 | 
						||
 | 
						||
## 哈希表优势
 | 
						||
 | 
						||
除了哈希表之外,还可以使用以下数据结构来实现上述查询功能:
 | 
						||
 | 
						||
1. **无序数组:** 每个元素为  `[学号, 姓名]` ;
 | 
						||
2. **有序数组:** 将 `1.` 中的数组按照学号从小到大排序;
 | 
						||
3. **链表:** 每个结点的值为 `[学号, 姓名]` ;
 | 
						||
4. **二叉搜索树:** 每个结点的值为 `[学号, 姓名]` ,根据学号大小来构建树;
 | 
						||
 | 
						||
使用上述方法,各项操作的时间复杂度如下表所示(在此不做赘述,详解可见 [二叉搜索树章节](https://www.hello-algo.com/chapter_tree/binary_search_tree/#_6))。无论是查找元素、还是增删元素,哈希表的时间复杂度都是 $O(1)$ ,全面胜出!
 | 
						||
 | 
						||
<div class="center-table" markdown>
 | 
						||
 | 
						||
|          | 无序数组 | 有序数组    | 链表   | 二叉搜索树  | 哈希表 |
 | 
						||
| -------- | -------- | ----------- | ------ | ----------- | ------ |
 | 
						||
| 查找元素 | $O(n)$   | $O(\log n)$ | $O(n)$ | $O(\log n)$ | $O(1)$ |
 | 
						||
| 插入元素 | $O(1)$   | $O(n)$      | $O(1)$ | $O(\log n)$ | $O(1)$ |
 | 
						||
| 删除元素 | $O(n)$   | $O(n)$      | $O(n)$ | $O(\log n)$ | $O(1)$ |
 | 
						||
 | 
						||
</div>
 | 
						||
 | 
						||
## 哈希表常用操作
 | 
						||
 | 
						||
哈希表的基本操作包括 **初始化、查询操作、添加与删除键值对**。
 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title="hash_map.java"
 | 
						||
    /* 初始化哈希表 */
 | 
						||
    Map<Integer, String> map = new HashMap<>();
 | 
						||
 | 
						||
    /* 添加操作 */
 | 
						||
    // 在哈希表中添加键值对 (key, value)
 | 
						||
    map.put(12836, "小哈");   
 | 
						||
    map.put(15937, "小啰");   
 | 
						||
    map.put(16750, "小算");   
 | 
						||
    map.put(13276, "小法");
 | 
						||
    map.put(10583, "小鸭");
 | 
						||
 | 
						||
    /* 查询操作 */
 | 
						||
    // 向哈希表输入键 key ,得到值 value
 | 
						||
    String name = map.get(15937);
 | 
						||
 | 
						||
    /* 删除操作 */
 | 
						||
    // 在哈希表中删除键值对 (key, value)
 | 
						||
    map.remove(10583);
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title="hash_map.cpp"
 | 
						||
    /* 初始化哈希表 */
 | 
						||
    unordered_map<int, string> map;
 | 
						||
 | 
						||
    /* 添加操作 */
 | 
						||
    // 在哈希表中添加键值对 (key, value)
 | 
						||
    map[12836] = "小哈";
 | 
						||
    map[15937] = "小啰";
 | 
						||
    map[16750] = "小算";
 | 
						||
    map[13276] = "小法";
 | 
						||
    map[10583] = "小鸭";
 | 
						||
 | 
						||
    /* 查询操作 */
 | 
						||
    // 向哈希表输入键 key ,得到值 value
 | 
						||
    string name = map[15937];
 | 
						||
 | 
						||
    /* 删除操作 */
 | 
						||
    // 在哈希表中删除键值对 (key, value)
 | 
						||
    map.erase(10583);
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title="hash_map.py"
 | 
						||
    """ 初始化哈希表 """
 | 
						||
    mapp = {}
 | 
						||
 | 
						||
    """ 添加操作 """
 | 
						||
    # 在哈希表中添加键值对 (key, value)
 | 
						||
    mapp[12836] = "小哈"
 | 
						||
    mapp[15937] = "小啰"
 | 
						||
    mapp[16750] = "小算"
 | 
						||
    mapp[13276] = "小法"
 | 
						||
    mapp[10583] = "小鸭"
 | 
						||
 | 
						||
    """ 查询操作 """
 | 
						||
    # 向哈希表输入键 key ,得到值 value
 | 
						||
    name = mapp[15937]
 | 
						||
 | 
						||
    """ 删除操作 """
 | 
						||
    # 在哈希表中删除键值对 (key, value)
 | 
						||
    mapp.pop(10583)
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title="hash_map_test.go"
 | 
						||
	/* 初始化哈希表 */
 | 
						||
	mapp := make(map[int]string)
 | 
						||
 | 
						||
	/* 添加操作 */
 | 
						||
	// 在哈希表中添加键值对 (key, value)
 | 
						||
	mapp[12836] = "小哈"
 | 
						||
	mapp[15937] = "小啰"
 | 
						||
	mapp[16750] = "小算"
 | 
						||
	mapp[13276] = "小法"
 | 
						||
	mapp[10583] = "小鸭"
 | 
						||
 | 
						||
	/* 查询操作 */
 | 
						||
	// 向哈希表输入键 key ,得到值 value
 | 
						||
	name := mapp[15937]
 | 
						||
 | 
						||
	/* 删除操作 */
 | 
						||
	// 在哈希表中删除键值对 (key, value)
 | 
						||
	delete(mapp, 10583)
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```js title="hash_map.js"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title="hash_map.ts"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title="hash_map.c"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title="hash_map.cs"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
遍历哈希表有三种方式,即 **遍历键值对、遍历键、遍历值**。
 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title="hash_map.java"
 | 
						||
    /* 遍历哈希表 */
 | 
						||
    // 遍历键值对 key->value
 | 
						||
    for (Map.Entry <Integer, String> kv: map.entrySet()) {
 | 
						||
        System.out.println(kv.getKey() + " -> " + kv.getValue());
 | 
						||
    }
 | 
						||
    // 单独遍历键 key
 | 
						||
    for (int key: map.keySet()) {
 | 
						||
        System.out.println(key);
 | 
						||
    }
 | 
						||
    // 单独遍历值 value
 | 
						||
    for (String val: map.values()) {
 | 
						||
        System.out.println(val);
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title="hash_map.cpp"
 | 
						||
    /* 遍历哈希表 */
 | 
						||
    // 遍历键值对 key->value
 | 
						||
    for (auto kv: map) {
 | 
						||
        cout << kv.first << " -> " << kv.second << endl;
 | 
						||
    }
 | 
						||
    // 单独遍历键 key
 | 
						||
    for (auto key: map) {
 | 
						||
        cout << key.first << endl;
 | 
						||
    }
 | 
						||
    // 单独遍历值 value
 | 
						||
    for (auto val: map) {
 | 
						||
        cout << val.second << endl;
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title="hash_map.py"
 | 
						||
    """ 遍历哈希表 """
 | 
						||
    # 遍历键值对 key->value
 | 
						||
    for key, value in mapp.items():
 | 
						||
        print(key, "->", value)
 | 
						||
    # 单独遍历键 key
 | 
						||
    for key in mapp.keys():
 | 
						||
        print(key)
 | 
						||
    # 单独遍历值 value
 | 
						||
    for value in mapp.values():
 | 
						||
        print(value)
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title="hash_map_test.go"
 | 
						||
    /* 遍历哈希表 */
 | 
						||
    // 遍历键值对 key->value
 | 
						||
    for key, value := range mapp {
 | 
						||
        fmt.Println(key, "->", value)
 | 
						||
    }
 | 
						||
    // 单独遍历键 key
 | 
						||
    for key := range mapp {
 | 
						||
        fmt.Println(key)
 | 
						||
    }
 | 
						||
    // 单独遍历值 value
 | 
						||
    for _, value := range mapp {
 | 
						||
        fmt.Println(value)
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```js title="hash_map.js"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title="hash_map.ts"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title="hash_map.c"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title="hash_map.cs"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
## 哈希函数
 | 
						||
 | 
						||
哈希表中存储元素的数据结构被称为「桶 Bucket」,底层实现可能是数组、链表、二叉树(红黑树),或是它们的组合。
 | 
						||
 | 
						||
最简单地,**我们可以仅用一个「数组」来实现哈希表**。首先,将所有 value 放入数组中,那么每个 value 在数组中都有唯一的「索引」。显然,访问 value 需要给定索引,而为了 **建立 key 和索引之间的映射关系**,我们需要使用「哈希函数 Hash Function」。
 | 
						||
 | 
						||
设数组为 `bucket` ,哈希函数为 `f(x)` ,输入键为 `key` 。那么获取 value 的步骤为:
 | 
						||
 | 
						||
1. 通过哈希函数计算出索引,即 `index = f(key)` ;
 | 
						||
2. 通过索引在数组中获取值,即 `value = bucket[index]` ;
 | 
						||
 | 
						||
以上述学生数据 `key 学号 -> value 姓名` 为例,我们可以将「哈希函数」设计为
 | 
						||
 | 
						||
$$
 | 
						||
f(x) = x \% 100
 | 
						||
$$
 | 
						||
 | 
						||

 | 
						||
 | 
						||
<p align="center"> Fig. 哈希函数 </p>
 | 
						||
 | 
						||
=== "Java"
 | 
						||
 | 
						||
    ```java title="array_hash_map.java"
 | 
						||
    /* 键值对 int->String */
 | 
						||
    class Entry {
 | 
						||
        public int key;     // 键
 | 
						||
        public String val;  // 值
 | 
						||
        public Entry(int key, String val) {
 | 
						||
            this.key = key;
 | 
						||
            this.val = val;
 | 
						||
        }
 | 
						||
    }
 | 
						||
 | 
						||
    /* 基于数组简易实现的哈希表 */
 | 
						||
    class ArrayHashMap {
 | 
						||
        private List<Entry> bucket;
 | 
						||
        public ArrayHashMap() {
 | 
						||
            // 初始化一个长度为 100 的桶(数组)
 | 
						||
            bucket = new ArrayList<>();
 | 
						||
            for (int i = 0; i < 100; i++) {
 | 
						||
                bucket.add(null);
 | 
						||
            }
 | 
						||
        }
 | 
						||
 | 
						||
        /* 哈希函数 */
 | 
						||
        private int hashFunc(int key) {
 | 
						||
            int index = key % 100;
 | 
						||
            return index;
 | 
						||
        }
 | 
						||
 | 
						||
        /* 查询操作 */
 | 
						||
        public String get(int key) {
 | 
						||
            int index = hashFunc(key);
 | 
						||
            Entry pair = bucket.get(index);
 | 
						||
            if (pair == null) return null;
 | 
						||
            return pair.val;
 | 
						||
        }
 | 
						||
 | 
						||
        /* 添加操作 */
 | 
						||
        public void put(int key, String val) {
 | 
						||
            Entry pair = new Entry(key, val);
 | 
						||
            int index = hashFunc(key);
 | 
						||
            bucket.set(index, pair);
 | 
						||
        }
 | 
						||
 | 
						||
        /* 删除操作 */
 | 
						||
        public void remove(int key) {
 | 
						||
            int index = hashFunc(key);
 | 
						||
            // 置为 null,代表删除
 | 
						||
            bucket.set(index, null);
 | 
						||
        }
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C++"
 | 
						||
 | 
						||
    ```cpp title="array_hash_map.cpp"
 | 
						||
    /* 键值对 int->String */
 | 
						||
    struct Entry {
 | 
						||
    public:
 | 
						||
        int key;
 | 
						||
        string val;
 | 
						||
        Entry(int key, string val) {
 | 
						||
            this->key = key;
 | 
						||
            this->val = val;
 | 
						||
        }
 | 
						||
    };
 | 
						||
 | 
						||
    /* 基于数组简易实现的哈希表 */
 | 
						||
    class ArrayHashMap {
 | 
						||
    private:
 | 
						||
        vector<Entry*> bucket;
 | 
						||
    public:
 | 
						||
        ArrayHashMap() {
 | 
						||
            // 初始化一个长度为 100 的桶(数组)
 | 
						||
            bucket= vector<Entry*>(100);
 | 
						||
        }
 | 
						||
 | 
						||
        /* 哈希函数 */
 | 
						||
        int hashFunc(int key) {
 | 
						||
            int index = key % 100;
 | 
						||
            return index;
 | 
						||
        }
 | 
						||
 | 
						||
        /* 查询操作 */
 | 
						||
        string get(int key) {
 | 
						||
            int index = hashFunc(key);
 | 
						||
            Entry* pair = bucket[index];
 | 
						||
            return pair->val;
 | 
						||
        }
 | 
						||
 | 
						||
        /* 添加操作 */
 | 
						||
        void put(int key, string val) {
 | 
						||
            Entry* pair = new Entry(key, val);
 | 
						||
            int index = hashFunc(key);
 | 
						||
            bucket[index] = pair;
 | 
						||
        }
 | 
						||
 | 
						||
        /* 删除操作 */
 | 
						||
        void remove(int key) {
 | 
						||
            int index = hashFunc(key);
 | 
						||
            // 置为空字符,代表删除
 | 
						||
            bucket[index] = nullptr;
 | 
						||
        }
 | 
						||
    };
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Python"
 | 
						||
 | 
						||
    ```python title="array_hash_map.py"
 | 
						||
    """ 键值对 int->String """
 | 
						||
    class Entry:
 | 
						||
        def __init__(self, key, val):
 | 
						||
            self.key = key
 | 
						||
            self.val = val
 | 
						||
    
 | 
						||
    """ 基于数组简易实现的哈希表 """
 | 
						||
    class ArrayHashMap:
 | 
						||
        def __init__(self):
 | 
						||
            # 初始化一个长度为 100 的桶(数组)
 | 
						||
            self.bucket = [None] * 100
 | 
						||
    
 | 
						||
        """ 哈希函数 """
 | 
						||
        def hashFunc(self, key):
 | 
						||
            index = key % 100
 | 
						||
            return index
 | 
						||
    
 | 
						||
        """ 查询操作 """
 | 
						||
        def get(self, key):
 | 
						||
            index = self.hashFunc(key)
 | 
						||
            pair = self.bucket[index]
 | 
						||
            if pair is None:
 | 
						||
                return None
 | 
						||
            return pair.val
 | 
						||
    
 | 
						||
        """ 添加操作 """
 | 
						||
        def put(self, key, val):
 | 
						||
            pair = Entry(key, val)
 | 
						||
            index = self.hashFunc(key)
 | 
						||
            self.bucket[index] = pair
 | 
						||
    
 | 
						||
        """ 删除操作 """
 | 
						||
        def remove(self, key):
 | 
						||
            index = self.hashFunc(key)
 | 
						||
            # 置为空字符,代表删除
 | 
						||
            self.bucket[index] = None
 | 
						||
    ```
 | 
						||
 | 
						||
=== "Go"
 | 
						||
 | 
						||
    ```go title="array_hash_map.go"
 | 
						||
    /* 键值对 int->String */
 | 
						||
    type Entry struct {
 | 
						||
        key int
 | 
						||
        val string
 | 
						||
    }
 | 
						||
 | 
						||
    /* 基于数组简易实现的哈希表 */
 | 
						||
    type ArrayHashMap struct {
 | 
						||
        bucket []*Entry
 | 
						||
    }
 | 
						||
 | 
						||
    func newArrayHashMap() *ArrayHashMap {
 | 
						||
        // 初始化一个长度为 100 的桶(数组)
 | 
						||
        bucket := make([]*Entry, 100)
 | 
						||
        return &ArrayHashMap{bucket: bucket}
 | 
						||
    }
 | 
						||
 | 
						||
    /* 哈希函数 */
 | 
						||
    func (a *ArrayHashMap) hashFunc(key int) int {
 | 
						||
        index := key % 100
 | 
						||
        return index
 | 
						||
    }
 | 
						||
 | 
						||
    /* 查询操作 */
 | 
						||
    func (a *ArrayHashMap) get(key int) string {
 | 
						||
        index := a.hashFunc(key)
 | 
						||
        pair := a.bucket[index]
 | 
						||
        if pair == nil {
 | 
						||
            return "Not Found"
 | 
						||
        }
 | 
						||
        return pair.val
 | 
						||
    }
 | 
						||
 | 
						||
    /* 添加操作 */
 | 
						||
    func (a *ArrayHashMap) put(key int, val string) {
 | 
						||
        pair := &Entry{key: key, val: val}
 | 
						||
        index := a.hashFunc(key)
 | 
						||
        a.bucket[index] = pair
 | 
						||
    }
 | 
						||
 | 
						||
    /* 删除操作 */
 | 
						||
    func (a *ArrayHashMap) remove(key int) {
 | 
						||
        index := a.hashFunc(key)
 | 
						||
        // 置为空字符,代表删除
 | 
						||
        a.bucket[index] = nil
 | 
						||
    }
 | 
						||
    ```
 | 
						||
 | 
						||
=== "JavaScript"
 | 
						||
 | 
						||
    ```js title="array_hash_map.js"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "TypeScript"
 | 
						||
 | 
						||
    ```typescript title="array_hash_map.ts"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C"
 | 
						||
 | 
						||
    ```c title="array_hash_map.c"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
=== "C#"
 | 
						||
 | 
						||
    ```csharp title="array_hash_map.cs"
 | 
						||
 | 
						||
    ```
 | 
						||
 | 
						||
## 哈希冲突
 | 
						||
 | 
						||
细心的同学可能会发现,**哈希函数 $f(x) = x \% 100$ 会在某些情况下失效**。具体地,当输入的 key 后两位相同时,哈希函数的计算结果也相同,指向同一个 value 。例如,分别查询两个学号 12836 和 20336 ,则有
 | 
						||
 | 
						||
$$
 | 
						||
f(12836) = f(20336) = 36
 | 
						||
$$
 | 
						||
 | 
						||
两个学号指向了同一个姓名,这明显是不对的,我们将这种现象称为「哈希冲突 Hash Collision」,其会严重影响查询的正确性。如何避免哈希冲突的问题将被留在下章讨论。
 | 
						||
 | 
						||

 | 
						||
 | 
						||
<p align="center"> Fig. 哈希冲突 </p>
 | 
						||
 | 
						||
综上所述,一个优秀的「哈希函数」应该具备以下特性:
 | 
						||
 | 
						||
- 尽量少地发生哈希冲突;
 | 
						||
- 时间复杂度 $O(1)$ ,计算尽可能高效;
 | 
						||
- 空间使用率高,即 “键值对占用空间 / 哈希表总占用空间” 尽可能大;
 |