mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-25 12:14:26 +08:00
2.9 KiB
Executable File
2.9 KiB
Executable File
978. Longest Turbulent Subarray
题目
A subarray A[i], A[i+1], ..., A[j]
of A
is said to be turbulent if and only if:
- For
i <= k < j
,A[k] > A[k+1]
whenk
is odd, andA[k] < A[k+1]
whenk
is even; - OR, for
i <= k < j
,A[k] > A[k+1]
whenk
is even, andA[k] < A[k+1]
whenk
is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example 1:
Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:
Input: [4,8,12,16]
Output: 2
Example 3:
Input: [100]
Output: 1
Note:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
题目大意
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1]; 或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。 也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
返回 A 的最大湍流子数组的长度。
提示:
- 1 <= A.length <= 40000
- 0 <= A[i] <= 10^9
解题思路
- 给出一个数组,要求找出“摆动数组”的最大长度。所谓“摆动数组”的意思是,元素一大一小间隔的。
- 这一题可以用滑动窗口来解答。用一个变量记住下次出现的元素需要大于还是需要小于前一个元素。也可以用模拟的方法,用两个变量分别记录上升和下降数字的长度。一旦元素相等了,上升和下降数字长度都置为 1,其他时候按照上升和下降的关系增加队列长度即可,最后输出动态维护的最长长度。
代码
package leetcode
// 解法一 模拟法
func maxTurbulenceSize(A []int) int {
inc, dec := 1, 1
maxLen := min(1, len(A))
for i := 1; i < len(A); i++ {
if A[i-1] < A[i] {
inc = dec + 1
dec = 1
} else if A[i-1] > A[i] {
dec = inc + 1
inc = 1
} else {
inc = 1
dec = 1
}
maxLen = max(maxLen, max(inc, dec))
}
return maxLen
}
// 解法二 滑动窗口
func maxTurbulenceSize1(A []int) int {
if len(A) == 1 {
return 1
}
// flag > 0 代表下一个数要大于前一个数,flag < 0 代表下一个数要小于前一个数
res, left, right, flag, lastNum := 0, 0, 0, A[1]-A[0], A[0]
for left < len(A) {
if right < len(A)-1 && ((A[right+1] > lastNum && flag > 0) || (A[right+1] < lastNum && flag < 0) || (right == left)) {
right++
flag = lastNum - A[right]
lastNum = A[right]
} else {
if right != left && flag != 0 {
res = max(res, right-left+1)
}
left++
}
}
return max(res, 1)
}