Files
LeetCode-Go/website/content/ChapterFour/0207.Course-Schedule.md
2020-08-09 00:39:24 +08:00

2.8 KiB
Executable File
Raw Blame History

207. Course Schedule

题目

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]] 
Output: true
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0, and to take course 0 you should
             also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.

题目大意

现在你总共有 n 门课需要选记为 0 到 n-1。在选修某些课程之前需要一些先修课程。 例如想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]。给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?

解题思路

  • 给出 n 个任务,每两个任务之间有相互依赖关系,比如 A 任务一定要在 B 任务之前完成才行。问是否可以完成所有任务。

  • 这一题就是标准的 AOV 网的拓扑排序问题。拓扑排序问题的解决办法是主要是循环执行以下两步直到不存在入度为0的顶点为止。

      1. 选择一个入度为0的顶点并输出之
      1. 从网中删除此顶点及所有出边。

    循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,即无法完成所有任务;否则输出的顶点序列就是一种拓扑序列,即可以完成所有任务。

代码


package leetcode

// AOV 网的拓扑排序
func canFinish(n int, pre [][]int) bool {
	in := make([]int, n)
	frees := make([][]int, n)
	next := make([]int, 0, n)
	for _, v := range pre {
		in[v[0]]++
		frees[v[1]] = append(frees[v[1]], v[0])
	}
	for i := 0; i < n; i++ {
		if in[i] == 0 {
			next = append(next, i)
		}
	}
	for i := 0; i != len(next); i++ {
		c := next[i]
		v := frees[c]
		for _, vv := range v {
			in[vv]--
			if in[vv] == 0 {
				next = append(next, vv)
			}
		}
	}
	return len(next) == n
}