mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-27 22:25:11 +08:00
132 lines
6.1 KiB
Markdown
132 lines
6.1 KiB
Markdown
---
|
|
title: Backtracking
|
|
type: docs
|
|
---
|
|
|
|
# Backtracking
|
|
|
|

|
|
|
|
- 排列问题 Permutations。第 46 题,第 47 题。第 60 题,第 526 题,第 996 题。
|
|
- 组合问题 Combination。第 39 题,第 40 题,第 77 题,第 216 题。
|
|
- 排列和组合杂交问题。第 1079 题。
|
|
- N 皇后终极解法(二进制解法)。第 51 题,第 52 题。
|
|
- 数独问题。第 37 题。
|
|
- 四个方向搜索。第 79 题,第 212 题,第 980 题。
|
|
- 子集合问题。第 78 题,第 90 题。
|
|
- Trie。第 208 题,第 211 题。
|
|
- BFS 优化。第 126 题,第 127 题。
|
|
- DFS 模板。(只是一个例子,不对应任何题)
|
|
|
|
```go
|
|
func combinationSum2(candidates []int, target int) [][]int {
|
|
if len(candidates) == 0 {
|
|
return [][]int{}
|
|
}
|
|
c, res := []int{}, [][]int{}
|
|
sort.Ints(candidates)
|
|
findcombinationSum2(candidates, target, 0, c, &res)
|
|
return res
|
|
}
|
|
|
|
func findcombinationSum2(nums []int, target, index int, c []int, res *[][]int) {
|
|
if target == 0 {
|
|
b := make([]int, len(c))
|
|
copy(b, c)
|
|
*res = append(*res, b)
|
|
return
|
|
}
|
|
for i := index; i < len(nums); i++ {
|
|
if i > index && nums[i] == nums[i-1] { // 这里是去重的关键逻辑
|
|
continue
|
|
}
|
|
if target >= nums[i] {
|
|
c = append(c, nums[i])
|
|
findcombinationSum2(nums, target-nums[i], i+1, c, res)
|
|
c = c[:len(c)-1]
|
|
}
|
|
}
|
|
}
|
|
```
|
|
- BFS 模板。(只是一个例子,不对应任何题)
|
|
|
|
```go
|
|
func updateMatrix_BFS(matrix [][]int) [][]int {
|
|
res := make([][]int, len(matrix))
|
|
if len(matrix) == 0 || len(matrix[0]) == 0 {
|
|
return res
|
|
}
|
|
queue := make([][]int, 0)
|
|
for i, _ := range matrix {
|
|
res[i] = make([]int, len(matrix[0]))
|
|
for j, _ := range res[i] {
|
|
if matrix[i][j] == 0 {
|
|
res[i][j] = -1
|
|
queue = append(queue, []int{i, j})
|
|
}
|
|
}
|
|
}
|
|
level := 1
|
|
for len(queue) > 0 {
|
|
size := len(queue)
|
|
for size > 0 {
|
|
size -= 1
|
|
node := queue[0]
|
|
queue = queue[1:]
|
|
i, j := node[0], node[1]
|
|
for _, direction := range [][]int{{-1, 0}, {1, 0}, {0, 1}, {0, -1}} {
|
|
x := i + direction[0]
|
|
y := j + direction[1]
|
|
if x < 0 || x >= len(matrix) || y < 0 || y >= len(matrix[0]) || res[x][y] < 0 || res[x][y] > 0 {
|
|
continue
|
|
}
|
|
res[x][y] = level
|
|
queue = append(queue, []int{x, y})
|
|
}
|
|
}
|
|
level++
|
|
}
|
|
for i, row := range res {
|
|
for j, cell := range row {
|
|
if cell == -1 {
|
|
res[i][j] = 0
|
|
}
|
|
}
|
|
}
|
|
return res
|
|
}
|
|
```
|
|
|
|
| Title | Solution | Difficulty | Time | Space |收藏|
|
|
| ----- | :--------: | :----------: | :----: | :-----: | :-----: |
|
|
|17. Letter Combinations of a Phone Number | [Go]({{< relref "/ChapterFour/0017.Letter-Combinations-of-a-Phone-Number.md" >}})| Medium | O(log n)| O(1)||
|
|
|22. Generate Parentheses| [Go]({{< relref "/ChapterFour/0022.Generate-Parentheses.md" >}})| Medium | O(log n)| O(1)||
|
|
|37. Sudoku Solver | [Go]({{< relref "/ChapterFour/0037.Sudoku-Solver.md" >}})| Hard | O(n^2)| O(n^2)|❤️|
|
|
|39. Combination Sum | [Go]({{< relref "/ChapterFour/0039.Combination-Sum.md" >}})| Medium | O(n log n)| O(n)||
|
|
|40. Combination Sum II | [Go]({{< relref "/ChapterFour/0040.Combination-Sum-II.md" >}})| Medium | O(n log n)| O(n)||
|
|
|46. Permutations | [Go]({{< relref "/ChapterFour/0046.Permutations.md" >}})| Medium | O(n)| O(n)|❤️|
|
|
|47. Permutations II | [Go]({{< relref "/ChapterFour/0047.Permutations-II.md" >}})| Medium | O(n^2)| O(n)|❤️|
|
|
|51. N-Queens | [Go]({{< relref "/ChapterFour/0051.N-Queens.md" >}})| Hard | O(n^2)| O(n)|❤️|
|
|
|52. N-Queens II | [Go]({{< relref "/ChapterFour/0052.N-Queens-II.md" >}})| Hard | O(n^2)| O(n)|❤️|
|
|
|60. Permutation Sequence | [Go]({{< relref "/ChapterFour/0060.Permutation-Sequence.md" >}})| Medium | O(n log n)| O(1)||
|
|
|77. Combinations | [Go]({{< relref "/ChapterFour/0077.Combinations.md" >}})| Medium | O(n)| O(n)|❤️|
|
|
|78. Subsets | [Go]({{< relref "/ChapterFour/0078.Subsets.md" >}})| Medium | O(n^2)| O(n)|❤️|
|
|
|79. Word Search | [Go]({{< relref "/ChapterFour/0079.Word-Search.md" >}})| Medium | O(n^2)| O(n^2)|❤️|
|
|
|89. Gray Codes | [Go]({{< relref "/ChapterFour/0089.Gray-Code.md" >}})| Medium | O(n)| O(1)||
|
|
|90. Subsets II | [Go]({{< relref "/ChapterFour/0090.Subsets-II.md" >}})| Medium | O(n^2)| O(n)|❤️|
|
|
|93. Restore IP Addresses | [Go]({{< relref "/ChapterFour/0093.Restore-IP-Addresses.md" >}})| Medium | O(n)| O(n)|❤️|
|
|
|126. Word Ladder II | [Go]({{< relref "/ChapterFour/0126.Word-Ladder-II.md" >}})| Hard | O(n)| O(n^2)|❤️|
|
|
|131. Palindrome Partitioning | [Go]({{< relref "/ChapterFour/0131.Palindrome-Partitioning.md" >}})| Medium | O(n)| O(n^2)|❤️|
|
|
|211. Add and Search Word - Data structure design | [Go]({{< relref "/ChapterFour/0211.Add-and-Search-Word---Data-structure-design.md" >}})| Medium | O(n)| O(n)|❤️|
|
|
|212. Word Search II | [Go]({{< relref "/ChapterFour/0212.Word-Search-II.md" >}})| Hard | O(n^2)| O(n^2)|❤️|
|
|
|216. Combination Sum III | [Go]({{< relref "/ChapterFour/0216.Combination-Sum-III.md" >}})| Medium | O(n)| O(1)|❤️|
|
|
|306. Additive Number | [Go]({{< relref "/ChapterFour/0306.Additive-Number.md" >}})| Medium | O(n^2)| O(1)|❤️|
|
|
|357. Count Numbers with Unique Digits | [Go]({{< relref "/ChapterFour/0357.Count-Numbers-with-Unique-Digits.md" >}})| Medium | O(1)| O(1)||
|
|
|401. Binary Watch | [Go]({{< relref "/ChapterFour/0401.Binary-Watch.md" >}})| Easy | O(1)| O(1)||
|
|
|526. Beautiful Arrangement | [Go]({{< relref "/ChapterFour/0526.Beautiful-Arrangement.md" >}})| Medium | O(n^2)| O(1)|❤️|
|
|
|784. Letter Case Permutation | [Go]({{< relref "/ChapterFour/0784.Letter-Case-Permutation.md" >}})| Easy | O(n)| O(n)||
|
|
|842. Split Array into Fibonacci Sequence | [Go]({{< relref "/ChapterFour/0842.Split-Array-into-Fibonacci-Sequence.md" >}})| Medium | O(n^2)| O(1)|❤️|
|
|
|980. Unique Paths III | [Go]({{< relref "/ChapterFour/0980.Unique-Paths-III.md" >}})| Hard | O(n log n)| O(n)||
|
|
|996. Number of Squareful Arrays | [Go]({{< relref "/ChapterFour/0996.Number-of-Squareful-Arrays.md" >}})| Hard | O(n log n)| O(n) ||
|
|
|1079. Letter Tile Possibilities | [Go]({{< relref "/ChapterFour/1079.Letter-Tile-Possibilities.md" >}})| Medium | O(n^2)| O(1)|❤️|
|
|
|---------------------------------------|---------------------------------|--------------------------|-----------------------|-----------|--------| |