mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-30 23:52:03 +08:00
171 lines
4.0 KiB
Markdown
Executable File
171 lines
4.0 KiB
Markdown
Executable File
# [509. Fibonacci Number](https://leetcode.com/problems/fibonacci-number/)
|
||
|
||
|
||
## 题目
|
||
|
||
The **Fibonacci numbers**, commonly denoted `F(n)` form a sequence, called the **Fibonacci sequence**, such that each number is the sum of the two preceding ones, starting from `0` and `1`. That is,
|
||
|
||
F(0) = 0, F(1) = 1
|
||
F(N) = F(N - 1) + F(N - 2), for N > 1.
|
||
|
||
Given `N`, calculate `F(N)`.
|
||
|
||
**Example 1**:
|
||
|
||
Input: 2
|
||
Output: 1
|
||
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
|
||
|
||
**Example 2**:
|
||
|
||
Input: 3
|
||
Output: 2
|
||
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
|
||
|
||
**Example 3**:
|
||
|
||
Input: 4
|
||
Output: 3
|
||
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
|
||
|
||
**Note**:
|
||
|
||
0 ≤ `N` ≤ 30.
|
||
|
||
|
||
## 题目大意
|
||
|
||
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
|
||
|
||
```
|
||
F(0) = 0, F(1) = 1
|
||
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
|
||
```
|
||
|
||
给定 N,计算 F(N)。
|
||
|
||
提示:0 ≤ N ≤ 30
|
||
|
||
## 解题思路
|
||
|
||
|
||
- 求斐波那契数列
|
||
- 这一题解法很多,大的分类是四种,递归,记忆化搜索(dp),矩阵快速幂,通项公式。其中记忆化搜索可以写 3 种方法,自底向上的,自顶向下的,优化空间复杂度版的。通项公式方法实质是求 a^b 这个还可以用快速幂优化时间复杂度到 O(log n) 。
|
||
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
import "math"
|
||
|
||
// 解法一 递归法 时间复杂度 O(2^n),空间复杂度 O(n)
|
||
func fib(N int) int {
|
||
if N <= 1 {
|
||
return N
|
||
}
|
||
return fib(N-1) + fib(N-2)
|
||
}
|
||
|
||
// 解法二 自底向上的记忆化搜索 时间复杂度 O(n),空间复杂度 O(n)
|
||
func fib1(N int) int {
|
||
if N <= 1 {
|
||
return N
|
||
}
|
||
cache := map[int]int{0: 0, 1: 1}
|
||
for i := 2; i <= N; i++ {
|
||
cache[i] = cache[i-1] + cache[i-2]
|
||
}
|
||
return cache[N]
|
||
}
|
||
|
||
// 解法三 自顶向下的记忆化搜索 时间复杂度 O(n),空间复杂度 O(n)
|
||
func fib2(N int) int {
|
||
if N <= 1 {
|
||
return N
|
||
}
|
||
return memoize(N, map[int]int{0: 0, 1: 1})
|
||
}
|
||
|
||
func memoize(N int, cache map[int]int) int {
|
||
if _, ok := cache[N]; ok {
|
||
return cache[N]
|
||
}
|
||
cache[N] = memoize(N-1, cache) + memoize(N-2, cache)
|
||
return memoize(N, cache)
|
||
}
|
||
|
||
// 解法四 优化版的 dp,节约内存空间 时间复杂度 O(n),空间复杂度 O(1)
|
||
func fib3(N int) int {
|
||
if N <= 1 {
|
||
return N
|
||
}
|
||
if N == 2 {
|
||
return 1
|
||
}
|
||
current, prev1, prev2 := 0, 1, 1
|
||
for i := 3; i <= N; i++ {
|
||
current = prev1 + prev2
|
||
prev2 = prev1
|
||
prev1 = current
|
||
}
|
||
return current
|
||
}
|
||
|
||
// 解法五 矩阵快速幂 时间复杂度 O(log n),空间复杂度 O(log n)
|
||
// | 1 1 | ^ n = | F(n+1) F(n) |
|
||
// | 1 0 | | F(n) F(n-1) |
|
||
func fib4(N int) int {
|
||
if N <= 1 {
|
||
return N
|
||
}
|
||
var A = [2][2]int{
|
||
{1, 1},
|
||
{1, 0},
|
||
}
|
||
A = matrixPower(A, N-1)
|
||
return A[0][0]
|
||
}
|
||
|
||
func matrixPower(A [2][2]int, N int) [2][2]int {
|
||
if N <= 1 {
|
||
return A
|
||
}
|
||
A = matrixPower(A, N/2)
|
||
A = multiply(A, A)
|
||
|
||
var B = [2][2]int{
|
||
{1, 1},
|
||
{1, 0},
|
||
}
|
||
if N%2 != 0 {
|
||
A = multiply(A, B)
|
||
}
|
||
|
||
return A
|
||
}
|
||
|
||
func multiply(A [2][2]int, B [2][2]int) [2][2]int {
|
||
x := A[0][0]*B[0][0] + A[0][1]*B[1][0]
|
||
y := A[0][0]*B[0][1] + A[0][1]*B[1][1]
|
||
z := A[1][0]*B[0][0] + A[1][1]*B[1][0]
|
||
w := A[1][0]*B[0][1] + A[1][1]*B[1][1]
|
||
A[0][0] = x
|
||
A[0][1] = y
|
||
A[1][0] = z
|
||
A[1][1] = w
|
||
return A
|
||
}
|
||
|
||
// 解法六 公式法 f(n)=(1/√5)*{[(1+√5)/2]^n -[(1-√5)/2]^n},用 时间复杂度在 O(log n) 和 O(n) 之间,空间复杂度 O(1)
|
||
// 经过实际测试,会发现 pow() 系统函数比快速幂慢,说明 pow() 比 O(log n) 慢
|
||
// 斐波那契数列是一个自然数的数列,通项公式却是用无理数来表达的。而且当 n 趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割 0.618(或者说后一项与前一项的比值小数部分越来越逼近 0.618)。
|
||
// 斐波那契数列用计算机计算的时候可以直接用四舍五入函数 Round 来计算。
|
||
func fib5(N int) int {
|
||
var goldenRatio float64 = float64((1 + math.Sqrt(5)) / 2)
|
||
return int(math.Round(math.Pow(goldenRatio, float64(N)) / math.Sqrt(5)))
|
||
}
|
||
|
||
``` |