mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-08-01 17:07:19 +08:00
89 lines
2.0 KiB
Markdown
Executable File
89 lines
2.0 KiB
Markdown
Executable File
# [120. Triangle](https://leetcode.com/problems/triangle/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
|
||
|
||
For example, given the following triangle
|
||
|
||
[
|
||
[2],
|
||
[3,4],
|
||
[6,5,7],
|
||
[4,1,8,3]
|
||
]
|
||
|
||
The minimum path sum from top to bottom is `11` (i.e., **2** + **3** + **5** + **1** = 11).
|
||
|
||
**Note**:
|
||
|
||
Bonus point if you are able to do this using only *O*(*n*) extra space, where *n* is the total number of rows in the triangle.
|
||
|
||
|
||
## 题目大意
|
||
|
||
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 求出从三角形顶端到底端的最小和。要求最好用 O(n) 的时间复杂度。
|
||
- 这一题最优解是不用辅助空间,直接从下层往上层推。普通解法是用二维数组 DP,稍微优化的解法是一维数组 DP。解法如下:
|
||
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
import (
|
||
"math"
|
||
)
|
||
|
||
// 解法一 倒序 DP,无辅助空间
|
||
func minimumTotal(triangle [][]int) int {
|
||
if triangle == nil {
|
||
return 0
|
||
}
|
||
for row := len(triangle) - 2; row >= 0; row-- {
|
||
for col := 0; col < len(triangle[row]); col++ {
|
||
triangle[row][col] += min(triangle[row+1][col], triangle[row+1][col+1])
|
||
}
|
||
}
|
||
return triangle[0][0]
|
||
}
|
||
|
||
// 解法二 正常 DP,空间复杂度 O(n)
|
||
func minimumTotal1(triangle [][]int) int {
|
||
if len(triangle) == 0 {
|
||
return 0
|
||
}
|
||
dp, minNum, index := make([]int, len(triangle[len(triangle)-1])), math.MaxInt64, 0
|
||
for ; index < len(triangle[0]); index++ {
|
||
dp[index] = triangle[0][index]
|
||
}
|
||
for i := 1; i < len(triangle); i++ {
|
||
for j := len(triangle[i]) - 1; j >= 0; j-- {
|
||
if j == 0 {
|
||
// 最左边
|
||
dp[j] += triangle[i][0]
|
||
} else if j == len(triangle[i])-1 {
|
||
// 最右边
|
||
dp[j] += dp[j-1] + triangle[i][j]
|
||
} else {
|
||
// 中间
|
||
dp[j] = min(dp[j-1]+triangle[i][j], dp[j]+triangle[i][j])
|
||
}
|
||
}
|
||
}
|
||
for i := 0; i < len(dp); i++ {
|
||
if dp[i] < minNum {
|
||
minNum = dp[i]
|
||
}
|
||
}
|
||
return minNum
|
||
}
|
||
|
||
``` |