mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-30 23:52:03 +08:00
93 lines
2.2 KiB
Markdown
Executable File
93 lines
2.2 KiB
Markdown
Executable File
# [64. Minimum Path Sum](https://leetcode.com/problems/minimum-path-sum/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given a *m* x *n* grid filled with non-negative numbers, find a path from top left to bottom right which *minimizes* the sum of all numbers along its path.
|
||
|
||
**Note**: You can only move either down or right at any point in time.
|
||
|
||
**Example**:
|
||
|
||
Input:
|
||
[
|
||
[1,3,1],
|
||
[1,5,1],
|
||
[4,2,1]
|
||
]
|
||
Output: 7
|
||
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
|
||
|
||
## 题目大意
|
||
|
||
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 在地图上求出从左上角到右下角的路径中,数字之和最小的一个,输出数字和。
|
||
- 这一题最简单的想法就是用一个二维数组来 DP,当然这是最原始的做法。由于只能往下和往右走,只需要维护 2 列信息就可以了,从左边推到最右边即可得到最小的解。更近一步,可以直接在原来的数组中做原地 DP,空间复杂度为 0 。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
// 解法一 原地 DP,无辅助空间
|
||
func minPathSum(grid [][]int) int {
|
||
m, n := len(grid), len(grid[0])
|
||
for i := 1; i < m; i++ {
|
||
grid[i][0] += grid[i-1][0]
|
||
}
|
||
for j := 1; j < n; j++ {
|
||
grid[0][j] += grid[0][j-1]
|
||
}
|
||
for i := 1; i < m; i++ {
|
||
for j := 1; j < n; j++ {
|
||
grid[i][j] += min(grid[i-1][j], grid[i][j-1])
|
||
}
|
||
}
|
||
return grid[m-1][n-1]
|
||
|
||
}
|
||
|
||
// 解法二 最原始的方法,辅助空间 O(n^2)
|
||
func minPathSum1(grid [][]int) int {
|
||
if len(grid) == 0 {
|
||
return 0
|
||
}
|
||
m, n := len(grid), len(grid[0])
|
||
if m == 0 || n == 0 {
|
||
return 0
|
||
}
|
||
|
||
dp := make([][]int, m)
|
||
for i := 0; i < m; i++ {
|
||
dp[i] = make([]int, n)
|
||
}
|
||
// initFirstCol
|
||
for i := 0; i < len(dp); i++ {
|
||
if i == 0 {
|
||
dp[i][0] = grid[i][0]
|
||
} else {
|
||
dp[i][0] = grid[i][0] + dp[i-1][0]
|
||
}
|
||
}
|
||
// initFirstRow
|
||
for i := 0; i < len(dp[0]); i++ {
|
||
if i == 0 {
|
||
dp[0][i] = grid[0][i]
|
||
} else {
|
||
dp[0][i] = grid[0][i] + dp[0][i-1]
|
||
}
|
||
}
|
||
for i := 1; i < m; i++ {
|
||
for j := 1; j < n; j++ {
|
||
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
|
||
}
|
||
}
|
||
return dp[m-1][n-1]
|
||
}
|
||
|
||
``` |