mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-08-01 00:21:48 +08:00
123 lines
4.0 KiB
Markdown
Executable File
123 lines
4.0 KiB
Markdown
Executable File
# [718. Maximum Length of Repeated Subarray](https://leetcode.com/problems/maximum-length-of-repeated-subarray/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given two integer arrays `A` and `B`, return the maximum length of an subarray that appears in both arrays.
|
||
|
||
**Example 1**:
|
||
|
||
Input:
|
||
A: [1,2,3,2,1]
|
||
B: [3,2,1,4,7]
|
||
Output: 3
|
||
Explanation:
|
||
The repeated subarray with maximum length is [3, 2, 1].
|
||
|
||
**Note**:
|
||
|
||
1. 1 <= len(A), len(B) <= 1000
|
||
2. 0 <= A[i], B[i] < 100
|
||
|
||
|
||
## 题目大意
|
||
|
||
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
|
||
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 给出两个数组,求这两个数组中最长相同子串的长度。
|
||
- 这一题最容易想到的是 DP 动态规划的解法。`dp[i][j]` 代表在 A 数组中以 `i` 下标开始的子串与 B 数组中以 `j` 下标开始的子串最长相同子串的长度,状态转移方程为 `dp[i][j] = dp[i+1][j+1] + 1` (当 `A[i] == B[j]`)。这种解法的时间复杂度是 O(n^2),空间复杂度 O(n^2)。
|
||
- 这一题最佳解法是二分搜索 + `Rabin-Karp`。比较相同子串耗时的地方在于,需要一层循环,遍历子串所有字符。但是如果比较两个数字就很快,`O(1)` 的时间复杂度。所以有人就想到了,能不能把字符串也映射成数字呢?这样比较起来就非常快。这个算法就是 `Rabin-Karp` 算法。字符串映射成一个数字不能随意映射,还要求能根据字符串前缀动态增加,比较下一个字符串的时候,可以利用已比较过的前缀,加速之后的字符串比较。在 Rabin-Karp 算法中有一个“码点”的概念。类似于10进制中的进制。具体的算法讲解可以见这篇:
|
||
|
||
[基础知识 - Rabin-Karp 算法](https://www.cnblogs.com/golove/p/3234673.html)
|
||
|
||
“码点”一般取值为一个素数。在 go 的 `strings` 包里面取值是 16777619。所以这一题也可以直接取这个值。由于这一次要求我们找最长长度,所以把最长长度作为二分搜索的目标。先将数组 A 和数组 B 中的数字都按照二分出来的长度,进行 `Rabin-Karp` hash。对 A 中的 hash 与下标做映射关系,存到 map 中,方便后面快速查找。然后遍历 B 中的 hash,当 hash 一致的时候,再匹配下标。如果下标存在,且拥有相同的前缀,那么就算找到了相同的子串了。最后就是不断的二分,找到最长的结果即可。这个解法的时间复杂度 O(n * log n),空间复杂度 O(n)。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
const primeRK = 16777619
|
||
|
||
// 解法一 二分搜索 + Rabin-Karp
|
||
func findLength(A []int, B []int) int {
|
||
low, high := 0, min(len(A), len(B))
|
||
for low < high {
|
||
mid := (low + high + 1) >> 1
|
||
if hasRepeated(A, B, mid) {
|
||
low = mid
|
||
} else {
|
||
high = mid - 1
|
||
}
|
||
}
|
||
return low
|
||
}
|
||
|
||
func hashSlice(arr []int, length int) []int {
|
||
// hash 数组里面记录 arr 比 length 长出去部分的 hash 值
|
||
hash, pl, h := make([]int, len(arr)-length+1), 1, 0
|
||
for i := 0; i < length-1; i++ {
|
||
pl *= primeRK
|
||
}
|
||
for i, v := range arr {
|
||
h = h*primeRK + v
|
||
if i >= length-1 {
|
||
hash[i-length+1] = h
|
||
h -= pl * arr[i-length+1]
|
||
}
|
||
}
|
||
return hash
|
||
}
|
||
|
||
func hasSamePrefix(A, B []int, length int) bool {
|
||
for i := 0; i < length; i++ {
|
||
if A[i] != B[i] {
|
||
return false
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
func hasRepeated(A, B []int, length int) bool {
|
||
hs := hashSlice(A, length)
|
||
hashToOffset := make(map[int][]int, len(hs))
|
||
for i, h := range hs {
|
||
hashToOffset[h] = append(hashToOffset[h], i)
|
||
}
|
||
for i, h := range hashSlice(B, length) {
|
||
if offsets, ok := hashToOffset[h]; ok {
|
||
for _, offset := range offsets {
|
||
if hasSamePrefix(A[offset:], B[i:], length) {
|
||
return true
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// 解法二 DP 动态规划
|
||
func findLength1(A []int, B []int) int {
|
||
res, dp := 0, make([][]int, len(A)+1)
|
||
for i := range dp {
|
||
dp[i] = make([]int, len(B)+1)
|
||
}
|
||
for i := len(A) - 1; i >= 0; i-- {
|
||
for j := len(B) - 1; j >= 0; j-- {
|
||
if A[i] == B[j] {
|
||
dp[i][j] = dp[i+1][j+1] + 1
|
||
if dp[i][j] > res {
|
||
res = dp[i][j]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
|
||
``` |