mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-28 22:51:54 +08:00
61 lines
1.5 KiB
Markdown
61 lines
1.5 KiB
Markdown
# [209. Minimum Size Subarray Sum](https://leetcode.com/problems/minimum-size-subarray-sum/)
|
||
|
||
## 题目
|
||
|
||
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
|
||
|
||
**Example 1**:
|
||
|
||
```
|
||
|
||
Input: s = 7, nums = [2,3,1,2,4,3]
|
||
Output: 2
|
||
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
|
||
|
||
```
|
||
|
||
**Follow up**:
|
||
|
||
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
|
||
|
||
## 题目大意
|
||
|
||
给定一个整型数组和一个数字 s,找到数组中最短的一个连续子数组,使得连续子数组的数字之和 sum>=s,返回最短的连续子数组的返回值。
|
||
|
||
## 解题思路
|
||
|
||
这一题的解题思路是用滑动窗口。在滑动窗口 [i,j]之间不断往后移动,如果总和小于 s,就扩大右边界 j,不断加入右边的值,直到 sum > s,之和再缩小 i 的左边界,不断缩小直到 sum < s,这时候右边界又可以往右移动。以此类推。
|
||
|
||
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
func minSubArrayLen(s int, nums []int) int {
|
||
n := len(nums)
|
||
if n == 0 {
|
||
return 0
|
||
}
|
||
left, right, res, sum := 0, -1, n+1, 0
|
||
for left < n {
|
||
if (right+1) < n && sum < s {
|
||
right++
|
||
sum += nums[right]
|
||
} else {
|
||
sum -= nums[left]
|
||
left++
|
||
}
|
||
if sum >= s {
|
||
res = min(res, right-left+1)
|
||
}
|
||
}
|
||
if res == n+1 {
|
||
return 0
|
||
}
|
||
return res
|
||
}
|
||
|
||
``` |