mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-28 22:51:54 +08:00
82 lines
2.8 KiB
Markdown
Executable File
82 lines
2.8 KiB
Markdown
Executable File
# [207. Course Schedule](https://leetcode.com/problems/course-schedule/)
|
||
|
||
## 题目
|
||
|
||
There are a total of n courses you have to take, labeled from `0` to `n-1`.
|
||
|
||
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: `[0,1]`
|
||
|
||
Given the total number of courses and a list of prerequisite **pairs**, is it possible for you to finish all courses?
|
||
|
||
**Example 1**:
|
||
|
||
Input: 2, [[1,0]]
|
||
Output: true
|
||
Explanation: There are a total of 2 courses to take.
|
||
To take course 1 you should have finished course 0. So it is possible.
|
||
|
||
**Example 2**:
|
||
|
||
Input: 2, [[1,0],[0,1]]
|
||
Output: false
|
||
Explanation: There are a total of 2 courses to take.
|
||
To take course 1 you should have finished course 0, and to take course 0 you should
|
||
also have finished course 1. So it is impossible.
|
||
|
||
**Note**:
|
||
|
||
1. The input prerequisites is a graph represented by **a list of edges**, not adjacency matrices. Read more about [how a graph is represented](https://www.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/representing-graphs).
|
||
2. You may assume that there are no duplicate edges in the input prerequisites.
|
||
|
||
|
||
## 题目大意
|
||
|
||
现在你总共有 n 门课需要选,记为 0 到 n-1。在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]。给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?
|
||
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 给出 n 个任务,每两个任务之间有相互依赖关系,比如 A 任务一定要在 B 任务之前完成才行。问是否可以完成所有任务。
|
||
- 这一题就是标准的 AOV 网的拓扑排序问题。拓扑排序问题的解决办法是主要是循环执行以下两步,直到不存在入度为0的顶点为止。
|
||
- 1. 选择一个入度为0的顶点并输出之;
|
||
- 2. 从网中删除此顶点及所有出边。
|
||
|
||
循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,即无法完成所有任务;否则输出的顶点序列就是一种拓扑序列,即可以完成所有任务。
|
||
|
||
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
// AOV 网的拓扑排序
|
||
func canFinish(n int, pre [][]int) bool {
|
||
in := make([]int, n)
|
||
frees := make([][]int, n)
|
||
next := make([]int, 0, n)
|
||
for _, v := range pre {
|
||
in[v[0]]++
|
||
frees[v[1]] = append(frees[v[1]], v[0])
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
if in[i] == 0 {
|
||
next = append(next, i)
|
||
}
|
||
}
|
||
for i := 0; i != len(next); i++ {
|
||
c := next[i]
|
||
v := frees[c]
|
||
for _, vv := range v {
|
||
in[vv]--
|
||
if in[vv] == 0 {
|
||
next = append(next, vv)
|
||
}
|
||
}
|
||
}
|
||
return len(next) == n
|
||
}
|
||
|
||
``` |