Files
LeetCode-Go/website/content/ChapterFour/0098.Validate-Binary-Search-Tree.md
2020-08-09 00:39:24 +08:00

99 lines
2.2 KiB
Markdown
Executable File
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [98. Validate Binary Search Tree](https://leetcode.com/problems/validate-binary-search-tree/)
## 题目
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys **less than** the node's key.
- The right subtree of a node contains only nodes with keys **greater than** the node's key.
- Both the left and right subtrees must also be binary search trees.
**xample 1:**
2
/ \
1 3
Input: [2,1,3]
Output: true
**Example 2**:
5
/ \
1 4
/ \
3 6
Input: [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.
## 题目大意
给定一个二叉树,判断其是否是一个有效的二叉搜索树。假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
## 解题思路
- 判断一个树是否是 BST按照定义递归判断即可
## 代码
```go
package leetcode
import "math"
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
// 解法一,直接按照定义比较大小,比 root 节点小的都在左边,比 root 节点大的都在右边
func isValidBST(root *TreeNode) bool {
return isValidbst(root, math.Inf(-1), math.Inf(1))
}
func isValidbst(root *TreeNode, min, max float64) bool {
if root == nil {
return true
}
v := float64(root.Val)
return v < max && v > min && isValidbst(root.Left, min, v) && isValidbst(root.Right, v, max)
}
// 解法二,把 BST 按照左中右的顺序输出到数组中,如果是 BST则数组中的数字是从小到大有序的如果出现逆序就不是 BST
func isValidBST1(root *TreeNode) bool {
arr := []int{}
inOrder(root, &arr)
for i := 1; i < len(arr); i++ {
if arr[i-1] >= arr[i] {
return false
}
}
return true
}
func inOrder(root *TreeNode, arr *[]int) {
if root == nil {
return
}
inOrder(root.Left, arr)
*arr = append(*arr, root.Val)
inOrder(root.Right, arr)
}
```