mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-30 15:46:18 +08:00
98 lines
3.2 KiB
Markdown
98 lines
3.2 KiB
Markdown
# [18. 4Sum](https://leetcode.com/problems/4sum/)
|
||
|
||
## 题目
|
||
|
||
Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
|
||
|
||
**Note**:
|
||
|
||
The solution set must not contain duplicate quadruplets.
|
||
|
||
**Example**:
|
||
|
||
```
|
||
|
||
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.
|
||
|
||
A solution set is:
|
||
[
|
||
[-1, 0, 0, 1],
|
||
[-2, -1, 1, 2],
|
||
[-2, 0, 0, 2]
|
||
]
|
||
|
||
```
|
||
|
||
## 题目大意
|
||
|
||
给定一个数组,要求在这个数组中找出 4 个数之和为 0 的所有组合。
|
||
|
||
|
||
## 解题思路
|
||
|
||
用 map 提前计算好任意 3 个数字之和,保存起来,可以将时间复杂度降到 O(n^3)。这一题比较麻烦的一点在于,最后输出解的时候,要求输出不重复的解。数组中同一个数字可能出现多次,同一个数字也可能使用多次,但是最后输出解的时候,不能重复。例如 [-1,1,2, -2] 和 [2, -1, -2, 1]、[-2, 2, -1, 1] 这 3 个解是重复的,即使 -1, -2 可能出现 100 次,每次使用的 -1, -2 的数组下标都是不同的。
|
||
|
||
这一题是第 15 题的升级版,思路都是完全一致的。这里就需要去重和排序了。map 记录每个数字出现的次数,然后对 map 的 key 数组进行排序,最后在这个排序以后的数组里面扫,找到另外 3 个数字能和自己组成 0 的组合。
|
||
|
||
第 15 题和第 18 题的解法一致。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
import "sort"
|
||
|
||
func fourSum(nums []int, target int) [][]int {
|
||
res := [][]int{}
|
||
counter := map[int]int{}
|
||
for _, value := range nums {
|
||
counter[value]++
|
||
}
|
||
|
||
uniqNums := []int{}
|
||
for key := range counter {
|
||
uniqNums = append(uniqNums, key)
|
||
}
|
||
sort.Ints(uniqNums)
|
||
|
||
for i := 0; i < len(uniqNums); i++ {
|
||
if (uniqNums[i]*4 == target) && counter[uniqNums[i]] >= 4 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[i], uniqNums[i]})
|
||
}
|
||
for j := i + 1; j < len(uniqNums); j++ {
|
||
if (uniqNums[i]*3+uniqNums[j] == target) && counter[uniqNums[i]] > 2 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[i], uniqNums[j]})
|
||
}
|
||
if (uniqNums[j]*3+uniqNums[i] == target) && counter[uniqNums[j]] > 2 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[j], uniqNums[j]})
|
||
}
|
||
if (uniqNums[j]*2+uniqNums[i]*2 == target) && counter[uniqNums[j]] > 1 && counter[uniqNums[i]] > 1 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[j], uniqNums[j]})
|
||
}
|
||
for k := j + 1; k < len(uniqNums); k++ {
|
||
if (uniqNums[i]*2+uniqNums[j]+uniqNums[k] == target) && counter[uniqNums[i]] > 1 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[j], uniqNums[k]})
|
||
}
|
||
if (uniqNums[j]*2+uniqNums[i]+uniqNums[k] == target) && counter[uniqNums[j]] > 1 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[j], uniqNums[k]})
|
||
}
|
||
if (uniqNums[k]*2+uniqNums[i]+uniqNums[j] == target) && counter[uniqNums[k]] > 1 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[k], uniqNums[k]})
|
||
}
|
||
c := target - uniqNums[i] - uniqNums[j] - uniqNums[k]
|
||
if c > uniqNums[k] && counter[c] > 0 {
|
||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[k], c})
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
|
||
|
||
```
|
||
|
||
|