mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 00:25:22 +08:00
117 lines
3.2 KiB
Markdown
117 lines
3.2 KiB
Markdown
# [1818. Minimum Absolute Sum Difference](https://leetcode.com/problems/minimum-absolute-sum-difference/)
|
||
|
||
## 题目
|
||
|
||
You are given two positive integer arrays `nums1` and `nums2`, both of length `n`.
|
||
|
||
The **absolute sum difference** of arrays `nums1` and `nums2` is defined as the **sum** of `|nums1[i] - nums2[i]|` for each `0 <= i < n` (**0-indexed**).
|
||
|
||
You can replace **at most one** element of `nums1` with **any** other element in `nums1` to **minimize** the absolute sum difference.
|
||
|
||
Return the *minimum absolute sum difference **after** replacing at most one ****element in the array `nums1`.* Since the answer may be large, return it **modulo** `109 + 7`.
|
||
|
||
`|x|` is defined as:
|
||
|
||
- `x` if `x >= 0`, or
|
||
- `x` if `x < 0`.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: nums1 = [1,7,5], nums2 = [2,3,5]
|
||
Output: 3
|
||
Explanation:There are two possible optimal solutions:
|
||
- Replace the second element with the first: [1,7,5] => [1,1,5], or
|
||
- Replace the second element with the third: [1,7,5] => [1,5,5].
|
||
Both will yield an absolute sum difference of|1-2| + (|1-3| or |5-3|) + |5-5| =3.
|
||
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: nums1 = [2,4,6,8,10], nums2 = [2,4,6,8,10]
|
||
Output: 0
|
||
Explanation:nums1 is equal to nums2 so no replacement is needed. This will result in an
|
||
absolute sum difference of 0.
|
||
|
||
```
|
||
|
||
**Example 3:**
|
||
|
||
```
|
||
Input: nums1 = [1,10,4,4,2,7], nums2 = [9,3,5,1,7,4]
|
||
Output: 20
|
||
Explanation:Replace the first element with the second: [1,10,4,4,2,7] => [10,10,4,4,2,7].
|
||
This yields an absolute sum difference of|10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `n == nums1.length`
|
||
- `n == nums2.length`
|
||
- `1 <= n <= 10^5`
|
||
- `1 <= nums1[i], nums2[i] <= 10^5`
|
||
|
||
## 题目大意
|
||
|
||
给你两个正整数数组 nums1 和 nums2 ,数组的长度都是 n 。数组 nums1 和 nums2 的 绝对差值和 定义为所有 |nums1[i] - nums2[i]|(0 <= i < n)的 总和(下标从 0 开始)。你可以选用 nums1 中的 任意一个 元素来替换 nums1 中的 至多 一个元素,以 最小化 绝对差值和。在替换数组 nums1 中最多一个元素 之后 ,返回最小绝对差值和。因为答案可能很大,所以需要对 10^9 + 7 取余 后返回。
|
||
|
||
## 解题思路
|
||
|
||
- 如果不改变任何元素,绝对差值和为
|
||
|
||
$$\sum \left | nums1[i] - nums2[i] \right |$$
|
||
|
||
- 如果改变一个元素后,那么绝对差值和为
|
||
|
||
$$\begin{aligned}&\sum \left | nums1[i] - nums2[i] \right | - \left ( \left | nums1[i] - nums2[i] \right | - \left | nums1[j] - nums2[i] \right |\right )\\= &\sum \left | nums1[i] - nums2[i] \right | - \Delta \end{aligned}$$
|
||
|
||
题目要求返回最小绝对差值和,即求
|
||
|
||
$$\Delta $$
|
||
|
||
的最大值。暴力枚举 nums1 和 nums2 中两两差值,找到 maxdiff。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func minAbsoluteSumDiff(nums1 []int, nums2 []int) int {
|
||
diff := 0
|
||
maxDiff := 0
|
||
for i, n2 := range nums2 {
|
||
d := abs(nums1[i] - n2)
|
||
diff += d
|
||
if maxDiff < d {
|
||
t := 100001
|
||
for _, n1 := range nums1 {
|
||
maxDiff = max(maxDiff, d-min(t, abs(n1-n2)))
|
||
}
|
||
}
|
||
}
|
||
return (diff - maxDiff) % (1e9 + 7)
|
||
}
|
||
|
||
func max(a, b int) int {
|
||
if a > b {
|
||
return a
|
||
}
|
||
return b
|
||
}
|
||
|
||
func abs(a int) int {
|
||
if a > 0 {
|
||
return a
|
||
}
|
||
return -a
|
||
}
|
||
|
||
func min(a, b int) int {
|
||
if a > b {
|
||
return b
|
||
}
|
||
return a
|
||
}
|
||
``` |