mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 08:27:30 +08:00
62 lines
2.4 KiB
Markdown
62 lines
2.4 KiB
Markdown
# [1673. Find the Most Competitive Subsequence](https://leetcode.com/problems/find-the-most-competitive-subsequence/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given an integer array `nums` and a positive integer `k`, return *the most **competitive** subsequence of* `nums` *of size* `k`.
|
||
|
||
An array's subsequence is a resulting sequence obtained by erasing some (possibly zero) elements from the array.
|
||
|
||
We define that a subsequence `a` is more **competitive** than a subsequence `b` (of the same length) if in the first position where `a` and `b` differ, subsequence `a` has a number **less** than the corresponding number in `b`. For example, `[1,3,4]` is more competitive than `[1,3,5]` because the first position they differ is at the final number, and `4` is less than `5`.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: nums = [3,5,2,6], k = 2
|
||
Output: [2,6]
|
||
Explanation: Among the set of every possible subsequence: {[3,5], [3,2], [3,6], [5,2], [5,6], [2,6]}, [2,6] is the most competitive.
|
||
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: nums = [2,4,3,3,5,4,9,6], k = 4
|
||
Output: [2,3,3,4]
|
||
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= nums.length <= 105`
|
||
- `0 <= nums[i] <= 109`
|
||
- `1 <= k <= nums.length`
|
||
|
||
## 题目大意
|
||
|
||
给你一个整数数组 nums 和一个正整数 k ,返回长度为 k 且最具 竞争力 的 nums 子序列。数组的子序列是从数组中删除一些元素(可能不删除元素)得到的序列。
|
||
|
||
在子序列 a 和子序列 b 第一个不相同的位置上,如果 a 中的数字小于 b 中对应的数字,那么我们称子序列 a 比子序列 b(相同长度下)更具 竞争力 。 例如,[1,3,4] 比 [1,3,5] 更具竞争力,在第一个不相同的位置,也就是最后一个位置上, 4 小于 5 。
|
||
|
||
## 解题思路
|
||
|
||
- 这一题是单调栈的典型题型。利用单调栈,可以保证原数组中元素相对位置不变,这满足题意中删除元素但不移动元素的要求。单调栈又能保证每次进栈,元素是最小的。
|
||
- 类似的题目还有第 42 题,第 84 题,第 496 题,第 503 题,第 856 题,第 901 题,第 907 题,第 1130 题,第 1425 题,第 1673 题。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
// 单调栈
|
||
func mostCompetitive(nums []int, k int) []int {
|
||
stack := make([]int, 0, len(nums))
|
||
for i := 0; i < len(nums); i++ {
|
||
for len(stack)+len(nums)-i > k && len(stack) > 0 && nums[i] < stack[len(stack)-1] {
|
||
stack = stack[:len(stack)-1]
|
||
}
|
||
stack = append(stack, nums[i])
|
||
}
|
||
return stack[:k]
|
||
}
|
||
``` |