mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-15 08:30:12 +08:00
113 lines
4.4 KiB
Markdown
113 lines
4.4 KiB
Markdown
# [1642. Furthest Building You Can Reach](https://leetcode.com/problems/furthest-building-you-can-reach/)
|
||
|
||
|
||
## 题目
|
||
|
||
You are given an integer array `heights` representing the heights of buildings, some `bricks`, and some `ladders`.
|
||
|
||
You start your journey from building `0` and move to the next building by possibly using bricks or ladders.
|
||
|
||
While moving from building `i` to building `i+1` (**0-indexed**),
|
||
|
||
- If the current building's height is **greater than or equal** to the next building's height, you do **not** need a ladder or bricks.
|
||
- If the current building's height is **less than** the next building's height, you can either use **one ladder** or `(h[i+1] - h[i])` **bricks**.
|
||
|
||
*Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.*
|
||
|
||
**Example 1:**
|
||
|
||

|
||
|
||
```
|
||
Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1
|
||
Output: 4
|
||
Explanation: Starting at building 0, you can follow these steps:
|
||
- Go to building 1 without using ladders nor bricks since 4 >= 2.
|
||
- Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7.
|
||
- Go to building 3 without using ladders nor bricks since 7 >= 6.
|
||
- Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9.
|
||
It is impossible to go beyond building 4 because you do not have any more bricks or ladders.
|
||
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: heights = [4,12,2,7,3,18,20,3,19], bricks = 10, ladders = 2
|
||
Output: 7
|
||
|
||
```
|
||
|
||
**Example 3:**
|
||
|
||
```
|
||
Input: heights = [14,3,19,3], bricks = 17, ladders = 0
|
||
Output: 3
|
||
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= heights.length <= 10^5`
|
||
- `1 <= heights[i] <= 10^6`
|
||
- `0 <= bricks <= 10^9`
|
||
- `0 <= ladders <= heights.length`
|
||
|
||
## 题目大意
|
||
|
||
给你一个整数数组 heights ,表示建筑物的高度。另有一些砖块 bricks 和梯子 ladders 。你从建筑物 0 开始旅程,不断向后面的建筑物移动,期间可能会用到砖块或梯子。当从建筑物 i 移动到建筑物 i+1(下标 从 0 开始 )时:
|
||
|
||
- 如果当前建筑物的高度 大于或等于 下一建筑物的高度,则不需要梯子或砖块。
|
||
- 如果当前建筑的高度 小于 下一个建筑的高度,您可以使用 一架梯子 或 (h[i+1] - h[i]) 个砖块
|
||
|
||
如果以最佳方式使用给定的梯子和砖块,返回你可以到达的最远建筑物的下标(下标 从 0 开始 )。
|
||
|
||
## 解题思路
|
||
|
||
- 这一题可能会想到贪心算法。梯子很厉害,可以无限长,所以梯子用来跨越最高的楼。遇到非最高的距离差,先用砖头。这样贪心的话不正确。例如,[1, 5, 1, 2, 3, 4, 10000] 这组数据,梯子有 1 个,4 块砖头。最大的差距在 10000 和 4 之间,贪心选择在此处用梯子。但是砖头不足以让我们走到最后两栋楼。贪心得到的结果是 3,正确的结果是 5,先用梯子,再用砖头走过 3,4,5 号楼。
|
||
- 上面的贪心解法错误在于没有“动态”的贪心,使用梯子应该选择能爬过楼里面最高的 2 个。于是顺理成章的想到了优先队列。维护一个长度为梯子个数的最小堆,当队列中元素超过梯子个数,便将队首最小值出队,出队的这个楼与楼的差距用砖头填补。所有砖头用完了,即是可以到达的最远楼号。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
import (
|
||
"container/heap"
|
||
)
|
||
|
||
func furthestBuilding(heights []int, bricks int, ladder int) int {
|
||
usedLadder := &heightDiffPQ{}
|
||
for i := 1; i < len(heights); i++ {
|
||
needbricks := heights[i] - heights[i-1]
|
||
if needbricks < 0 {
|
||
continue
|
||
}
|
||
if ladder > 0 {
|
||
heap.Push(usedLadder, needbricks)
|
||
ladder--
|
||
} else {
|
||
if len(*usedLadder) > 0 && needbricks > (*usedLadder)[0] {
|
||
needbricks, (*usedLadder)[0] = (*usedLadder)[0], needbricks
|
||
heap.Fix(usedLadder, 0)
|
||
}
|
||
if bricks -= needbricks; bricks < 0 {
|
||
return i - 1
|
||
}
|
||
}
|
||
}
|
||
return len(heights) - 1
|
||
}
|
||
|
||
type heightDiffPQ []int
|
||
|
||
func (pq heightDiffPQ) Len() int { return len(pq) }
|
||
func (pq heightDiffPQ) Less(i, j int) bool { return pq[i] < pq[j] }
|
||
func (pq heightDiffPQ) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] }
|
||
func (pq *heightDiffPQ) Push(x interface{}) { *pq = append(*pq, x.(int)) }
|
||
func (pq *heightDiffPQ) Pop() interface{} {
|
||
x := (*pq)[len(*pq)-1]
|
||
*pq = (*pq)[:len(*pq)-1]
|
||
return x
|
||
}
|
||
``` |