Files
2021-02-13 23:00:46 +08:00

170 lines
6.1 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [1631. Path With Minimum Effort](https://leetcode.com/problems/path-with-minimum-effort/)
## 题目
You are a hiker preparing for an upcoming hike. You are given `heights`, a 2D array of size `rows x columns`, where `heights[row][col]` represents the height of cell `(row, col)`. You are situated in the top-left cell, `(0, 0)`, and you hope to travel to the bottom-right cell, `(rows-1, columns-1)` (i.e., **0-indexed**). You can move **up**, **down**, **left**, or **right**, and you wish to find a route that requires the minimum **effort**.
A route's **effort** is the **maximum absolute difference** in heights between two consecutive cells of the route.
Return *the minimum **effort** required to travel from the top-left cell to the bottom-right cell.*
**Example 1:**
![https://assets.leetcode.com/uploads/2020/10/04/ex1.png](https://assets.leetcode.com/uploads/2020/10/04/ex1.png)
```
Input: heights = [[1,2,2],[3,8,2],[5,3,5]]
Output: 2
Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.
This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.
```
**Example 2:**
![https://assets.leetcode.com/uploads/2020/10/04/ex2.png](https://assets.leetcode.com/uploads/2020/10/04/ex2.png)
```
Input: heights = [[1,2,3],[3,8,4],[5,3,5]]
Output: 1
Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].
```
**Example 3:**
![https://assets.leetcode.com/uploads/2020/10/04/ex3.png](https://assets.leetcode.com/uploads/2020/10/04/ex3.png)
```
Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]]
Output: 0
Explanation: This route does not require any effort.
```
**Constraints:**
- `rows == heights.length`
- `columns == heights[i].length`
- `1 <= rows, columns <= 100`
- `1 <= heights[i][j] <= 10^6`
## 题目大意
你准备参加一场远足活动。给你一个二维 `rows x columns` 的地图 `heights` ,其中 `heights[row][col]` 表示格子 `(row, col)` 的高度。一开始你在最左上角的格子 `(0, 0)` ,且你希望去最右下角的格子 `(rows-1, columns-1)` (注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。请你返回从左上角走到右下角的最小 体力消耗值 。
## 解题思路
- 此题和第 778 题解题思路完全一致。在第 778 题中求的是最短连通时间。此题求的是连通路径下的最小体力值。都是求的最小值,只是 2 个值的意义不同罢了。
- 按照第 778 题的思路,本题也有多种解法。第一种解法是 DFS + 二分。先将题目变换一个等价问法。题目要求找到最小体力消耗值,也相当于问是否存在一个体力消耗值 x只要大于等于 x一定能连通。利用二分搜索来找到这个临界值。体力消耗值是有序的此处满足二分搜索的条件。题目给定柱子高度是 [1,10^6],所以体力值一定在 [0,10^6-1] 这个区间内。判断是否取中值的条件是用 DFS 或者 BFS 搜索 (0,0) 点和 (N-1, N-1) 点之间是否连通。时间复杂度O(mnlogC),其中 m 和 n 分别是地图的行数和列数C 是格子的最大高度。C 最大为 10^6所以 logC 常数也很小。空间复杂度 O(mn)。
- 第二种解法是并查集。将图中所有边按照权值从小到大进行排序,并依次加入并查集中。直到加入一条权值为 x 的边以后,左上角到右下角连通了。最小体力消耗值也就找到了。注意加入边的时候,只加入 `i-1``i` `j-1``j` 这 2 类相邻的边。因为最小体力消耗意味着不走回头路。上下左右四个方向到达一个节点只可能从上边和左边走过来。从下边和右边走过来肯定是浪费体力了。时间复杂度O(mnlog(mn)),其中 m 和 n 分别是地图的行数和列数,图中的边数为 O(mn)。空间复杂度 O(mn),即为存储所有边以及并查集需要的空间。
## 代码
```go
package leetcode
import (
"sort"
"github.com/halfrost/LeetCode-Go/template"
)
var dir = [4][2]int{
{0, 1},
{1, 0},
{0, -1},
{-1, 0},
}
// 解法一 DFS + 二分
func minimumEffortPath(heights [][]int) int {
n, m := len(heights), len(heights[0])
visited := make([][]bool, n)
for i := range visited {
visited[i] = make([]bool, m)
}
low, high := 0, 1000000
for low < high {
threshold := low + (high-low)>>1
if !hasPath(heights, visited, 0, 0, threshold) {
low = threshold + 1
} else {
high = threshold
}
for i := range visited {
for j := range visited[i] {
visited[i][j] = false
}
}
}
return low
}
func hasPath(heights [][]int, visited [][]bool, i, j, threshold int) bool {
n, m := len(heights), len(heights[0])
if i == n-1 && j == m-1 {
return true
}
visited[i][j] = true
res := false
for _, d := range dir {
ni, nj := i+d[0], j+d[1]
if ni < 0 || ni >= n || nj < 0 || nj >= m || visited[ni][nj] || res {
continue
}
diff := abs(heights[i][j] - heights[ni][nj])
if diff <= threshold && hasPath(heights, visited, ni, nj, threshold) {
res = true
}
}
return res
}
func abs(a int) int {
if a < 0 {
a = -a
}
return a
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a < b {
return b
}
return a
}
// 解法二 并查集
func minimumEffortPath1(heights [][]int) int {
n, m, edges, uf := len(heights), len(heights[0]), []edge{}, template.UnionFind{}
uf.Init(n * m)
for i, row := range heights {
for j, h := range row {
id := i*m + j
if i > 0 {
edges = append(edges, edge{id - m, id, abs(h - heights[i-1][j])})
}
if j > 0 {
edges = append(edges, edge{id - 1, id, abs(h - heights[i][j-1])})
}
}
}
sort.Slice(edges, func(i, j int) bool { return edges[i].diff < edges[j].diff })
for _, e := range edges {
uf.Union(e.v, e.w)
if uf.Find(0) == uf.Find(n*m-1) {
return e.diff
}
}
return 0
}
type edge struct {
v, w, diff int
}
```