mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-11 06:05:20 +08:00
89 lines
3.7 KiB
Markdown
89 lines
3.7 KiB
Markdown
# [1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit](https://leetcode.com/problems/longest-continuous-subarray-with-absolute-diff-less-than-or-equal-to-limit/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given an array of integers `nums` and an integer `limit`, return the size of the longest **non-empty** subarray such that the absolute difference between any two elements of this subarray is less than or equal to `limit`*.*
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: nums = [8,2,4,7], limit = 4
|
||
Output: 2
|
||
Explanation: All subarrays are:
|
||
[8] with maximum absolute diff |8-8| = 0 <= 4.
|
||
[8,2] with maximum absolute diff |8-2| = 6 > 4.
|
||
[8,2,4] with maximum absolute diff |8-2| = 6 > 4.
|
||
[8,2,4,7] with maximum absolute diff |8-2| = 6 > 4.
|
||
[2] with maximum absolute diff |2-2| = 0 <= 4.
|
||
[2,4] with maximum absolute diff |2-4| = 2 <= 4.
|
||
[2,4,7] with maximum absolute diff |2-7| = 5 > 4.
|
||
[4] with maximum absolute diff |4-4| = 0 <= 4.
|
||
[4,7] with maximum absolute diff |4-7| = 3 <= 4.
|
||
[7] with maximum absolute diff |7-7| = 0 <= 4.
|
||
Therefore, the size of the longest subarray is 2.
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: nums = [10,1,2,4,7,2], limit = 5
|
||
Output: 4
|
||
Explanation: The subarray [2,4,7,2] is the longest since the maximum absolute diff is |2-7| = 5 <= 5.
|
||
```
|
||
|
||
**Example 3:**
|
||
|
||
```
|
||
Input: nums = [4,2,2,2,4,4,2,2], limit = 0
|
||
Output: 3
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= nums.length <= 10^5`
|
||
- `1 <= nums[i] <= 10^9`
|
||
- `0 <= limit <= 10^9`
|
||
|
||
## 题目大意
|
||
|
||
给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。如果不存在满足条件的子数组,则返回 0 。
|
||
|
||
## 解题思路
|
||
|
||
- 最开始想到的思路是利用滑动窗口遍历一遍数组,每个窗口内排序,取出最大最小值。滑动窗口遍历一次的时间复杂度是 O(n),所以此题时间复杂度是否高效落在了排序算法上了。由于前后 2 个窗口数据是有关联的,仅仅只变动了 2 个数据(左窗口移出的数据和右窗口移进的数据),所以排序没有必要每次都重新排序。这里利用二叉排序树来排序,添加和删除元素时间复杂度是 O(log n),这种方法总的时间复杂度是 O(n log n)。空间复杂度 O(n)。
|
||
- 二叉排序树的思路是否还有再优化的空间?答案是有。二叉排序树内维护了所有结点的有序关系,但是这个关系是多余的。此题只需要找到最大值和最小值,并不需要除此以外节点的有序信息。所以用二叉排序树是大材小用了。可以换成 2 个单调队列,一个维护窗口内的最大值,另一个维护窗口内的最小值。这样优化以后,时间复杂度降低到 O(n),空间复杂度 O(n)。具体实现见代码。
|
||
- 单调栈的题还有第 42 题,第 84 题,第 496 题,第 503 题,第 739 题,第 856 题,第 901 题,第 907 题,第 1130 题,第 1425 题,第 1673 题。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func longestSubarray(nums []int, limit int) int {
|
||
minStack, maxStack, left, res := []int{}, []int{}, 0, 0
|
||
for right, num := range nums {
|
||
for len(minStack) > 0 && nums[minStack[len(minStack)-1]] > num {
|
||
minStack = minStack[:len(minStack)-1]
|
||
}
|
||
minStack = append(minStack, right)
|
||
for len(maxStack) > 0 && nums[maxStack[len(maxStack)-1]] < num {
|
||
maxStack = maxStack[:len(maxStack)-1]
|
||
}
|
||
maxStack = append(maxStack, right)
|
||
if len(minStack) > 0 && len(maxStack) > 0 && nums[maxStack[0]]-nums[minStack[0]] > limit {
|
||
if left == minStack[0] {
|
||
minStack = minStack[1:]
|
||
}
|
||
if left == maxStack[0] {
|
||
maxStack = maxStack[1:]
|
||
}
|
||
left++
|
||
}
|
||
if right-left+1 > res {
|
||
res = right - left + 1
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
``` |