mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 08:27:30 +08:00
83 lines
2.4 KiB
Markdown
83 lines
2.4 KiB
Markdown
# [991. Broken Calculator](https://leetcode.com/problems/broken-calculator/)
|
||
|
||
|
||
## 题目
|
||
|
||
On a broken calculator that has a number showing on its display, we can perform two operations:
|
||
|
||
- **Double**: Multiply the number on the display by 2, or;
|
||
- **Decrement**: Subtract 1 from the number on the display.
|
||
|
||
Initially, the calculator is displaying the number `X`.
|
||
|
||
Return the minimum number of operations needed to display the number `Y`.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: X = 2, Y = 3
|
||
Output: 2
|
||
Explanation: Use double operation and then decrement operation {2 -> 4 -> 3}.
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: X = 5, Y = 8
|
||
Output: 2
|
||
Explanation: Use decrement and then double {5 -> 4 -> 8}.
|
||
```
|
||
|
||
**Example 3:**
|
||
|
||
```
|
||
Input: X = 3, Y = 10
|
||
Output: 3
|
||
Explanation: Use double, decrement and double {3 -> 6 -> 5 -> 10}.
|
||
```
|
||
|
||
**Example 4:**
|
||
|
||
```
|
||
Input: X = 1024, Y = 1
|
||
Output: 1023
|
||
Explanation: Use decrement operations 1023 times.
|
||
```
|
||
|
||
**Note:**
|
||
|
||
1. `1 <= X <= 10^9`
|
||
2. `1 <= Y <= 10^9`
|
||
|
||
## 题目大意
|
||
|
||
在显示着数字的坏计算器上,我们可以执行以下两种操作:
|
||
|
||
- 双倍(Double):将显示屏上的数字乘 2;
|
||
- 递减(Decrement):将显示屏上的数字减 1 。
|
||
|
||
最初,计算器显示数字 X。返回显示数字 Y 所需的最小操作数。
|
||
|
||
## 解题思路
|
||
|
||
- 看到本题的数据规模非常大,`10^9`,算法只能采用 `O(sqrt(n))`、`O(log n)`、`O(1)` 的算法。`O(sqrt(n))` 和 `O(1)` 在本题中是不可能的。所以按照数据规模来估计,本题只能尝试 `O(log n)` 的算法。`O(log n)` 的算法有二分搜索,不过本题不太符合二分搜索算法背景。题目中明显出现乘 2,这很明显是可以达到 `O(log n)` 的。最终确定解题思路是数学方法,循环中会用到乘 2 或者除 2 的计算。
|
||
- 既然出现了乘 2 和减一的操作,很容易考虑到奇偶性上。题目要求最小操作数,贪心思想,应该尽可能多的使用除 2 操作,使得 Y 和 X 大小差不多,最后再利用加一操作微调。只要 Y 比 X 大就执行除法操作。当然这里要考虑一次奇偶性,如果 Y 是奇数,先加一变成偶数再除二;如果 Y 是偶数,直接除二。如此操作直到 Y 不大于 X,最后执行 `X-Y` 次加法操作微调即可。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func brokenCalc(X int, Y int) int {
|
||
res := 0
|
||
for Y > X {
|
||
res++
|
||
if Y&1 == 1 {
|
||
Y++
|
||
} else {
|
||
Y /= 2
|
||
}
|
||
}
|
||
return res + X - Y
|
||
}
|
||
``` |