mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 00:25:22 +08:00
54 lines
1.9 KiB
Markdown
54 lines
1.9 KiB
Markdown
# [795. Number of Subarrays with Bounded Maximum](https://leetcode.com/problems/number-of-subarrays-with-bounded-maximum/)
|
||
|
||
|
||
## 题目
|
||
|
||
We are given an array `nums` of positive integers, and two positive integers `left` and `right` (`left <= right`).
|
||
|
||
Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least `left` and at most `right`.
|
||
|
||
```
|
||
Example:Input:
|
||
nums = [2, 1, 4, 3]
|
||
left = 2
|
||
right = 3
|
||
Output: 3
|
||
Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].
|
||
```
|
||
|
||
**Note:**
|
||
|
||
- `left`, `right`, and `nums[i]` will be an integer in the range `[0, 109]`.
|
||
- The length of `nums` will be in the range of `[1, 50000]`.
|
||
|
||
## 题目大意
|
||
|
||
给定一个元素都是正整数的数组`A` ,正整数 `L` 以及 `R` (`L <= R`)。求连续、非空且其中最大元素满足大于等于`L` 小于等于`R`的子数组个数。
|
||
|
||
## 解题思路
|
||
|
||
- 题目要求子数组最大元素在 [L,R] 区间内。假设 count(bound) 为计算所有元素都小于等于 bound 的子数组数量。那么本题所求的答案可转化为 count(R) - count(L-1)。
|
||
- 如何统计所有元素小于 bound 的子数组数量呢?使用 count 变量记录在 bound 的左边,小于等于 bound 的连续元素数量。当找到一个这样的元素时,在此位置上结束的有效子数组的数量为 count + 1。当遇到一个元素大于 B 时,则在此位置结束的有效子数组的数量为 0。res 将每轮 count 累加,最终 res 中存的即是满足条件的所有子数组数量。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func numSubarrayBoundedMax(nums []int, left int, right int) int {
|
||
return getAnswerPerBound(nums, right) - getAnswerPerBound(nums, left-1)
|
||
}
|
||
|
||
func getAnswerPerBound(nums []int, bound int) int {
|
||
res, count := 0, 0
|
||
for _, num := range nums {
|
||
if num <= bound {
|
||
count++
|
||
} else {
|
||
count = 0
|
||
}
|
||
res += count
|
||
}
|
||
return res
|
||
}
|
||
``` |