mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 16:36:41 +08:00
64 lines
4.5 KiB
Markdown
Executable File
64 lines
4.5 KiB
Markdown
Executable File
# [732. My Calendar III](https://leetcode.com/problems/my-calendar-iii/)
|
||
|
||
|
||
## 题目
|
||
|
||
Implement a `MyCalendarThree` class to store your events. A new event can **always** be added.
|
||
|
||
Your class will have one method, `book(int start, int end)`. Formally, this represents a booking on the half open interval `[start, end)`, the range of real numbers `x` such that `start <= x < end`.
|
||
|
||
A K-booking happens when **K** events have some non-empty intersection (ie., there is some time that is common to all K events.)
|
||
|
||
For each call to the method `MyCalendar.book`, return an integer `K` representing the largest integer such that there exists a `K`-booking in the calendar.
|
||
|
||
Your class will be called like this:
|
||
|
||
`MyCalendarThree cal = new MyCalendarThree();`
|
||
|
||
`MyCalendarThree.book(start, end)`
|
||
|
||
**Example 1:**
|
||
|
||
MyCalendarThree();
|
||
MyCalendarThree.book(10, 20); // returns 1
|
||
MyCalendarThree.book(50, 60); // returns 1
|
||
MyCalendarThree.book(10, 40); // returns 2
|
||
MyCalendarThree.book(5, 15); // returns 3
|
||
MyCalendarThree.book(5, 10); // returns 3
|
||
MyCalendarThree.book(25, 55); // returns 3
|
||
Explanation:
|
||
The first two events can be booked and are disjoint, so the maximum K-booking is a 1-booking.
|
||
The third event [10, 40) intersects the first event, and the maximum K-booking is a 2-booking.
|
||
The remaining events cause the maximum K-booking to be only a 3-booking.
|
||
Note that the last event locally causes a 2-booking, but the answer is still 3 because
|
||
eg. [10, 20), [10, 40), and [5, 15) are still triple booked.
|
||
|
||
**Note:**
|
||
|
||
- The number of calls to `MyCalendarThree.book` per test case will be at most `400`.
|
||
- In calls to `MyCalendarThree.book(start, end)`, `start` and `end` are integers in the range `[0, 10^9]`.
|
||
|
||
|
||
## 题目大意
|
||
|
||
实现一个 MyCalendar 类来存放你的日程安排,你可以一直添加新的日程安排。
|
||
|
||
MyCalendar 有一个 book(int start, int end)方法。它意味着在start到end时间内增加一个日程安排,注意,这里的时间是半开区间,即 [start, end), 实数 x 的范围为, start <= x < end。当 K 个日程安排有一些时间上的交叉时(例如K个日程安排都在同一时间内),就会产生 K 次预订。每次调用 MyCalendar.book方法时,返回一个整数 K ,表示最大的 K 次预订。
|
||
|
||
请按照以下步骤调用MyCalendar 类: MyCalendar cal = new MyCalendar(); MyCalendar.book(start, end)
|
||
|
||
说明:
|
||
|
||
- 每个测试用例,调用 MyCalendar.book 函数最多不超过 400 次。
|
||
- 调用函数 MyCalendar.book(start, end)时, start 和 end 的取值范围为 [0, 10^9]。
|
||
|
||
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 设计一个日程类,每添加一个日程,实时显示出当前排期中累计日程最多的个数,例如在一段时间内,排了 3 个日程,其他时间内都只有 0,1,2 个日程,则输出 3 。
|
||
- 拿到这个题目以后会立即想到线段树。由于题目中只有增加日程,所以这一题难度不大。这一题和第 699 题也类似,但是有区别,第 699 题中,俄罗斯方块会依次摞起来,而这一题中,俄罗斯方块也就摞起来,但是方块下面如果是空挡,方块会断掉。举个例子:依次增加区间 [10,20],[10,40],[5,15],[5,10],如果是第 699 题的规则,这 [5,10] 的这块砖块会落在 [5,15] 上,从而使得高度为 4,但是这一题是日程,日程不一样,[5,15] 这个区间内有 3 个日程,但是其他部分都没有 3 个日程,所以第三块砖块 [5,15] 中的 [5,10] 会“断裂”,掉下去,第四块砖块还是 [5,10],落在第三块砖块断落下去的位置,它们俩落在一起的高度是 2 。
|
||
- 构造一颗线段树,这里用树来构造,如果用数组需要开辟很大的空间。当区间左右边界和查询边界完全相同的时候再累加技术,否则不加,继续划分区间。以区间的左边界作为划分区间的标准,因为区间左边界是开区间,右边是闭区间。一个区间的计数值以区间左边界的计数为准。还是上面的例子,[5,10) 计数以 5 为标准,count = 2,[10,15) 计数以 10 为标准,count = 3 。还需要再动态维护一个最大值。这个线段树的实现比较简单。
|
||
- 类似的题目有:第 715 题,第 218 题,第 699 题。第 715 题是区间更新定值(**不是增减**),第 218 题可以用扫描线,第 732 题和第 699 题类似,也是俄罗斯方块的题目,但是第 732 题的俄罗斯方块的方块会“断裂”。
|