Files
2021-01-04 00:28:07 +08:00

142 lines
4.4 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [460. LFU Cache](https://leetcode.com/problems/lfu-cache/)
## 题目
Design and implement a data structure for [Least Frequently Used (LFU)](https://en.wikipedia.org/wiki/Least_frequently_used) cache.
Implement the `LFUCache` class:
- `LFUCache(int capacity)` Initializes the object with the `capacity` of the data structure.
- `int get(int key)` Gets the value of the `key` if the `key` exists in the cache. Otherwise, returns `1`.
- `void put(int key, int value)` Sets or inserts the value if the `key` is not already present. When the cache reaches its `capacity`, it should invalidate the least frequently used item before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), **the least recently** used `key` would be evicted.
**Notice that** the number of times an item is used is the number of calls to the `get` and `put` functions for that item since it was inserted. This number is set to zero when the item is removed.
**Example 1:**
```
Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
Explanation
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1);
lfu.put(2, 2);
lfu.get(1); // return 1
lfu.put(3, 3); // evicts key 2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
lfu.put(4, 4); // evicts key 1.
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
lfu.get(4); // return 4
```
**Constraints:**
- `0 <= capacity, key, value <= 104`
- At most `10^5` calls will be made to `get` and `put`.
**Follow up:** Could you do both operations in `O(1)` time complexity?
## 题目大意
请你为 最不经常使用LFU缓存算法设计并实现数据结构。
实现 LFUCache 类:
- LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
- int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
- void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最久未使用 的键。
注意「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。
进阶你是否可以在 O(1) 时间复杂度内执行两项操作?
## 解题思路
- 这一题是 LFU 经典面试题,详细解释见[第三章 LFUCache 模板](https://books.halfrost.com/leetcode/ChapterThree/LFUCache/)。
## 代码
```go
package leetcode
import "container/list"
type LFUCache struct {
nodes map[int]*list.Element
lists map[int]*list.List
capacity int
min int
}
type node struct {
key int
value int
frequency int
}
func Constructor(capacity int) LFUCache {
return LFUCache{nodes: make(map[int]*list.Element),
lists: make(map[int]*list.List),
capacity: capacity,
min: 0,
}
}
func (this *LFUCache) Get(key int) int {
value, ok := this.nodes[key]
if !ok {
return -1
}
currentNode := value.Value.(*node)
this.lists[currentNode.frequency].Remove(value)
currentNode.frequency++
if _, ok := this.lists[currentNode.frequency]; !ok {
this.lists[currentNode.frequency] = list.New()
}
newList := this.lists[currentNode.frequency]
newNode := newList.PushBack(currentNode)
this.nodes[key] = newNode
if currentNode.frequency-1 == this.min && this.lists[currentNode.frequency-1].Len() == 0 {
this.min++
}
return currentNode.value
}
func (this *LFUCache) Put(key int, value int) {
if this.capacity == 0 {
return
}
if currentValue, ok := this.nodes[key]; ok {
currentNode := currentValue.Value.(*node)
currentNode.value = value
this.Get(key)
return
}
if this.capacity == len(this.nodes) {
currentList := this.lists[this.min]
frontNode := currentList.Front()
delete(this.nodes, frontNode.Value.(*node).key)
currentList.Remove(frontNode)
}
this.min = 1
currentNode := &node{
key: key,
value: value,
frequency: 1,
}
if _, ok := this.lists[1]; !ok {
this.lists[1] = list.New()
}
newList := this.lists[1]
newNode := newList.PushBack(currentNode)
this.nodes[key] = newNode
}
```