mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-04 16:12:47 +08:00
50 lines
2.8 KiB
Markdown
Executable File
50 lines
2.8 KiB
Markdown
Executable File
# [275. H-Index II](https://leetcode.com/problems/h-index-ii/)
|
||
|
||
## 题目
|
||
|
||
Given an array of citations **sorted in ascending order** (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index.
|
||
|
||
According to the [definition of h-index on Wikipedia](https://en.wikipedia.org/wiki/H-index): "A scientist has index h if h of his/her N papers have **at least** h citations each, and the other N − h papers have **no more than** h citations each."
|
||
|
||
**Example:**
|
||
|
||
Input: citations = [0,1,3,5,6]
|
||
Output: 3
|
||
Explanation: [0,1,3,5,6] means the researcher has 5 papers in total and each of them had
|
||
received 0, 1, 3, 5, 6 citations respectively.
|
||
Since the researcher has 3 papers with at least 3 citations each and the remaining
|
||
two with no more than 3 citations each, her h-index is 3.
|
||
|
||
**Note:**
|
||
|
||
If there are several possible values for *h*, the maximum one is taken as the h-index.
|
||
|
||
**Follow up:**
|
||
|
||
- This is a follow up problem to [H-Index](https://leetcode.com/problems/h-index/description/), where `citations` is now guaranteed to be sorted in ascending order.
|
||
- Could you solve it in logarithmic time complexity?
|
||
|
||
|
||
|
||
## 题目大意
|
||
|
||
|
||
给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照升序排列。编写一个方法,计算出研究者的 h 指数。
|
||
|
||
h 指数的定义: “h 代表“高引用次数”(high citations),一名科研人员的 h 指数是指他(她)的 (N 篇论文中)至多有 h 篇论文分别被引用了至少 h 次。(其余的 N - h 篇论文每篇被引用次数不多于 h 次。)"
|
||
|
||
说明:
|
||
|
||
- 如果 h 有多有种可能的值 ,h 指数是其中最大的那个。
|
||
|
||
进阶:
|
||
|
||
- 这是 H 指数 的延伸题目,本题中的 citations 数组是保证有序的。
|
||
你可以优化你的算法到对数时间复杂度吗?
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 给出一个数组,代表该作者论文被引用次数,要求这个作者的 h 指数。h 指数定义:"高引用次数”(`high citations`),一名科研人员的 h 指数是指他(她)的 (N 篇论文中)至多有 h 篇论文分别被引用了至少 h 次。(其余的 N - h 篇论文每篇被引用次数不多于 h 次。)
|
||
- 这一题要找出 h 指数,即要找到一个边界,在这个边界上为最多的 h 指数。可以用二分搜索来解决这道题。当 `len(citations)-mid > citations[mid]` 时,说明 h 指数的边界一定在右边,因为最多 `len(citations)-mid` 篇数比引用数 `citations[mid]` 还要大。否则 h 指数的边界在左边界,缩小边界以后继续二分。找到边界以后,最终求的是 h 指数,用 `len(citations) - low` 即是结果。
|