mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 00:25:22 +08:00
134 lines
3.7 KiB
Markdown
134 lines
3.7 KiB
Markdown
# [146. LRU Cache](https://leetcode.com/problems/lru-cache/)
|
||
|
||
## 题目
|
||
|
||
Design a data structure that follows the constraints of a **[Least Recently Used (LRU) cache](https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU)**.
|
||
|
||
Implement the `LRUCache` class:
|
||
|
||
- `LRUCache(int capacity)` Initialize the LRU cache with **positive** size `capacity`.
|
||
- `int get(int key)` Return the value of the `key` if the key exists, otherwise return `1`.
|
||
- `void put(int key, int value)` Update the value of the `key` if the `key` exists. Otherwise, add the `key-value` pair to the cache. If the number of keys exceeds the `capacity` from this operation, **evict** the least recently used key.
|
||
|
||
**Follow up:**Could you do `get` and `put` in `O(1)` time complexity?
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input
|
||
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
|
||
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
|
||
Output
|
||
[null, null, null, 1, null, -1, null, -1, 3, 4]
|
||
|
||
Explanation
|
||
LRUCache lRUCache = new LRUCache(2);
|
||
lRUCache.put(1, 1); // cache is {1=1}
|
||
lRUCache.put(2, 2); // cache is {1=1, 2=2}
|
||
lRUCache.get(1); // return 1
|
||
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
|
||
lRUCache.get(2); // returns -1 (not found)
|
||
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
|
||
lRUCache.get(1); // return -1 (not found)
|
||
lRUCache.get(3); // return 3
|
||
lRUCache.get(4); // return 4
|
||
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= capacity <= 3000`
|
||
- `0 <= key <= 3000`
|
||
- `0 <= value <= 104`
|
||
- At most `3 * 104` calls will be made to `get` and `put`.
|
||
|
||
## 题目大意
|
||
|
||
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
|
||
实现 LRUCache 类:
|
||
|
||
- LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
|
||
- int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
|
||
- void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
|
||
|
||
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
|
||
|
||
## 解题思路
|
||
|
||
- 这一题是 LRU 经典面试题,详细解释见[第三章 LRUCache 模板](https://books.halfrost.com/leetcode/ChapterThree/LRUCache/)。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
type LRUCache struct {
|
||
head, tail *Node
|
||
Keys map[int]*Node
|
||
Cap int
|
||
}
|
||
|
||
type Node struct {
|
||
Key, Val int
|
||
Prev, Next *Node
|
||
}
|
||
|
||
func Constructor(capacity int) LRUCache {
|
||
return LRUCache{Keys: make(map[int]*Node), Cap: capacity}
|
||
}
|
||
|
||
func (this *LRUCache) Get(key int) int {
|
||
if node, ok := this.Keys[key]; ok {
|
||
this.Remove(node)
|
||
this.Add(node)
|
||
return node.Val
|
||
}
|
||
return -1
|
||
}
|
||
|
||
func (this *LRUCache) Put(key int, value int) {
|
||
if node, ok := this.Keys[key]; ok {
|
||
node.Val = value
|
||
this.Remove(node)
|
||
this.Add(node)
|
||
return
|
||
} else {
|
||
node = &Node{Key: key, Val: value}
|
||
this.Keys[key] = node
|
||
this.Add(node)
|
||
}
|
||
if len(this.Keys) > this.Cap {
|
||
delete(this.Keys, this.tail.Key)
|
||
this.Remove(this.tail)
|
||
}
|
||
}
|
||
|
||
func (this *LRUCache) Add(node *Node) {
|
||
node.Prev = nil
|
||
node.Next = this.head
|
||
if this.head != nil {
|
||
this.head.Prev = node
|
||
}
|
||
this.head = node
|
||
if this.tail == nil {
|
||
this.tail = node
|
||
this.tail.Next = nil
|
||
}
|
||
}
|
||
|
||
func (this *LRUCache) Remove(node *Node) {
|
||
if node == this.head {
|
||
this.head = node.Next
|
||
node.Next = nil
|
||
return
|
||
}
|
||
if node == this.tail {
|
||
this.tail = node.Prev
|
||
node.Prev.Next = nil
|
||
node.Prev = nil
|
||
return
|
||
}
|
||
node.Prev.Next = node.Next
|
||
node.Next.Prev = node.Prev
|
||
}
|
||
``` |