mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-04 16:12:47 +08:00
99 lines
3.9 KiB
Markdown
99 lines
3.9 KiB
Markdown
# [115. Distinct Subsequences](https://leetcode.com/problems/distinct-subsequences/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given two strings `s` and `t`, return *the number of distinct subsequences of `s` which equals `t`*.
|
||
|
||
A string's **subsequence** is a new string formed from the original string by deleting some (can be none) of the characters without disturbing the remaining characters' relative positions. (i.e., `"ACE"` is a subsequence of `"ABCDE"` while `"AEC"` is not).
|
||
|
||
It is guaranteed the answer fits on a 32-bit signed integer.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: s = "rabbbit", t = "rabbit"
|
||
Output: 3
|
||
Explanation:
|
||
As shown below, there are 3 ways you can generate "rabbit" from S.
|
||
rabbbitrabbbitrabbbit
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: s = "babgbag", t = "bag"
|
||
Output: 5
|
||
Explanation:
|
||
As shown below, there are 5 ways you can generate "bag" from S.
|
||
babgbagbabgbagbabgbagbabgbagbabgbag
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `0 <= s.length, t.length <= 1000`
|
||
- `s` and `t` consist of English letters.
|
||
|
||
## 题目大意
|
||
|
||
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)题目数据保证答案符合 32 位带符号整数范围。
|
||
|
||
## 解题思路
|
||
|
||
- 在字符串 `s` 中最多包含多少个字符串 `t`。这里面包含很多重叠子问题,所以尝试用动态规划解决这个问题。定义 `dp[i][j]` 代表 `s[i:]` 的子序列中 `t[j:]` 出现的个数。初始化先判断边界条件。当 `i = len(s)` 且 `0≤ j < len(t)` 的时候,`s[i:]` 为空字符串,`t[j:]` 不为空,所以 `dp[len(s)][j] = 0`。当 `j = len(t)` 且 `0 ≤ i < len(s)` 的时候,`t[j:]` 不为空字符串,空字符串是任何字符串的子序列。所以 `dp[i][n] = 1`。
|
||
- 当 `i < len(s)` 且 `j < len(t)` 的时候,如果 `s[i] == t[j]`,有 2 种匹配方式,第一种将 `s[i]` 与 `t[j]` 匹配,那么 `t[j+1:]` 匹配 `s[i+1:]` 的子序列,子序列数为 `dp[i+1][j+1]`;第二种将 `s[i]` 不与 `t[j]` 匹配,`t[j:]` 作为 `s[i+1:]` 的子序列,子序列数为 `dp[i+1][j]`。综合 2 种情况,当 `s[i] == t[j]` 时,`dp[i][j] = dp[i+1][j+1] + dp[i+1][j]`。
|
||
- 如果 `s[i] != t[j]`,此时 `t[j:]` 只能作为 `s[i+1:]` 的子序列,子序列数为 `dp[i+1][j]`。所以当 `s[i] != t[j]` 时,`dp[i][j] = dp[i+1][j]`。综上分析得:
|
||
|
||
$$dp[i][j] = \left\{\begin{matrix}dp[i+1][j+1]+dp[i+1][j]&,s[i]=t[j]\\ dp[i+1][j]&,s[i]!=t[j]\end{matrix}\right.$$
|
||
|
||
- 最后是优化版本。写出上述代码以后,可以发现填表的过程是从右下角一直填到左上角。填表顺序是 从下往上一行一行的填。行内从右往左填。于是可以将这个二维数据压缩到一维。因为填充当前行只需要用到它的下一行信息即可,更进一步,用到的是下一行中右边元素的信息。于是可以每次更新该行时,先将旧的值存起来,计算更新该行的时候从右往左更新。这样做即可减少一维空间,将原来的二维数组压缩到一维数组。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
// 解法一 压缩版 DP
|
||
func numDistinct(s string, t string) int {
|
||
dp := make([]int, len(s)+1)
|
||
for i, curT := range t {
|
||
pre := 0
|
||
for j, curS := range s {
|
||
if i == 0 {
|
||
pre = 1
|
||
}
|
||
newDP := dp[j+1]
|
||
if curT == curS {
|
||
dp[j+1] = dp[j] + pre
|
||
} else {
|
||
dp[j+1] = dp[j]
|
||
}
|
||
pre = newDP
|
||
}
|
||
}
|
||
return dp[len(s)]
|
||
}
|
||
|
||
// 解法二 普通 DP
|
||
func numDistinct1(s, t string) int {
|
||
m, n := len(s), len(t)
|
||
if m < n {
|
||
return 0
|
||
}
|
||
dp := make([][]int, m+1)
|
||
for i := range dp {
|
||
dp[i] = make([]int, n+1)
|
||
dp[i][n] = 1
|
||
}
|
||
for i := m - 1; i >= 0; i-- {
|
||
for j := n - 1; j >= 0; j-- {
|
||
if s[i] == t[j] {
|
||
dp[i][j] = dp[i+1][j+1] + dp[i+1][j]
|
||
} else {
|
||
dp[i][j] = dp[i+1][j]
|
||
}
|
||
}
|
||
}
|
||
return dp[0][0]
|
||
}
|
||
``` |