mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 08:27:30 +08:00
75 lines
2.5 KiB
Markdown
75 lines
2.5 KiB
Markdown
# [1310. XOR Queries of a Subarray](https://leetcode.com/problems/xor-queries-of-a-subarray/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given the array `arr` of positive integers and the array `queries` where `queries[i] = [Li,Ri]`, for each query `i` compute the **XOR** of elements from `Li` to `Ri` (that is, `arr[Li]xor arr[Li+1]xor ...xor arr[Ri]`). Return an array containing the result for the given `queries`.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
|
||
Output: [2,7,14,8]
|
||
Explanation:
|
||
The binary representation of the elements in the array are:
|
||
1 = 0001
|
||
3 = 0011
|
||
4 = 0100
|
||
8 = 1000
|
||
The XOR values for queries are:
|
||
[0,1] = 1 xor 3 = 2
|
||
[1,2] = 3 xor 4 = 7
|
||
[0,3] = 1 xor 3 xor 4 xor 8 = 14
|
||
[3,3] = 8
|
||
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
|
||
Output: [8,0,4,4]
|
||
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= arr.length <= 3 * 10^4`
|
||
- `1 <= arr[i] <= 10^9`
|
||
- `1 <= queries.length <= 3 * 10^4`
|
||
- `queries[i].length == 2`
|
||
- `0 <= queries[i][0] <= queries[i][1] < arr.length`
|
||
|
||
## 题目大意
|
||
|
||
有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]。对于每个查询 i,请你计算从 Li 到 Ri 的 XOR 值(即 arr[Li] xor arr[Li+1] xor ... xor arr[Ri])作为本次查询的结果。并返回一个包含给定查询 queries 所有结果的数组。
|
||
|
||
## 解题思路
|
||
|
||
- 此题求区间异或,很容易让人联想到区间求和。区间求和利用前缀和,可以使得 query 从 O(n) 降为 O(1)。区间异或能否也用类似前缀和的思想呢?答案是肯定的。利用异或的两个性质,x ^ x = 0,x ^ 0 = x。那么有:(由于 LaTeX 中异或符号 ^ 是特殊字符,笔者用 $\oplus$ 代替异或)
|
||
|
||
$$\begin{aligned}Query(left,right) &=arr[left] \oplus \cdots \oplus arr[right]\\&=(arr[0] \oplus \cdots \oplus arr[left-1]) \oplus (arr[0] \oplus \cdots \oplus arr[left-1]) \oplus (arr[left] \oplus \cdots \oplus arr[right])\\ &=(arr[0] \oplus \cdots \oplus arr[left-1]) \oplus (arr[0] \oplus \cdots \oplus arr[right])\\ &=xors[left] \oplus xors[right+1]\\ \end{aligned}$$
|
||
|
||
按照这个思路解题,便可以将 query 从 O(n) 降为 O(1),总的时间复杂度为 O(n)。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func xorQueries(arr []int, queries [][]int) []int {
|
||
xors := make([]int, len(arr))
|
||
xors[0] = arr[0]
|
||
for i := 1; i < len(arr); i++ {
|
||
xors[i] = arr[i] ^ xors[i-1]
|
||
}
|
||
res := make([]int, len(queries))
|
||
for i, q := range queries {
|
||
res[i] = xors[q[1]]
|
||
if q[0] > 0 {
|
||
res[i] ^= xors[q[0]-1]
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
``` |