mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 16:36:41 +08:00
135 lines
4.0 KiB
Markdown
135 lines
4.0 KiB
Markdown
# [874. Walking Robot Simulation](https://leetcode.com/problems/walking-robot-simulation/)
|
||
|
||
|
||
## 题目
|
||
|
||
A robot on an infinite XY-plane starts at point `(0, 0)` and faces north. The robot can receive one of three possible types of `commands`:
|
||
|
||
- `2`: turn left `90` degrees,
|
||
- `1`: turn right `90` degrees, or
|
||
- `1 <= k <= 9`: move forward `k` units.
|
||
|
||
Some of the grid squares are `obstacles`. The `ith` obstacle is at grid point `obstacles[i] = (xi, yi)`.
|
||
|
||
If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)
|
||
|
||
Return *the maximum Euclidean distance that the robot will be from the origin **squared** (i.e. if the distance is* `5`*, return* `25`*)*.
|
||
|
||
**Note:**
|
||
|
||
- North means +Y direction.
|
||
- East means +X direction.
|
||
- South means -Y direction.
|
||
- West means -X direction.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: commands = [4,-1,3], obstacles = []
|
||
Output: 25
|
||
Explanation: The robot starts at (0, 0):
|
||
1. Move north 4 units to (0, 4).
|
||
2. Turn right.
|
||
3. Move east 3 units to (3, 4).
|
||
The furthest point away from the origin is (3, 4), which is 32 + 42 = 25 units away.
|
||
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
|
||
Output: 65
|
||
Explanation: The robot starts at (0, 0):
|
||
1. Move north 4 units to (0, 4).
|
||
2. Turn right.
|
||
3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4).
|
||
4. Turn left.
|
||
5. Move north 4 units to (1, 8).
|
||
The furthest point away from the origin is (1, 8), which is 12 + 82 = 65 units away.
|
||
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= commands.length <= 104`
|
||
- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`.
|
||
- `0 <= obstacles.length <= 104`
|
||
- `3 * 104 <= xi, yi <= 3 * 104`
|
||
- The answer is guaranteed to be less than `231`.
|
||
|
||
## 题目大意
|
||
|
||
机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands :
|
||
|
||
- 2 :向左转 90 度
|
||
- -1 :向右转 90 度
|
||
- 1 <= x <= 9 :向前移动 x 个单位长度
|
||
|
||
在网格上有一些格子被视为障碍物 obstacles 。第 i 个障碍物位于网格点 obstacles[i] = (xi, yi) 。机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续尝试进行该路线的其余部分。返回从原点到机器人所有经过的路径点(坐标为整数)的最大欧式距离的平方。(即,如果距离为 5 ,则返回 25 )
|
||
|
||
注意:
|
||
|
||
- 北表示 +Y 方向。
|
||
- 东表示 +X 方向。
|
||
- 南表示 -Y 方向。
|
||
- 西表示 -X 方向。
|
||
|
||
## 解题思路
|
||
|
||
- 这个题的难点在于,怎么用编程语言去描述机器人的行为,可以用以下数据结构表达机器人的行为:
|
||
|
||
```go
|
||
direct:= 0 // direct表示机器人移动方向:0 1 2 3 4 (北东南西),默认朝北
|
||
x, y := 0, 0 // 表示当前机器人所在横纵坐标位置,默认为(0,0)
|
||
directX := []int{0, 1, 0, -1}
|
||
directY := []int{1, 0, -1, 0}
|
||
// 组合directX directY和direct,表示机器人往某一个方向移动
|
||
nextX := x + directX[direct]
|
||
nextY := y + directY[direct]
|
||
```
|
||
|
||
其他代码按照题意翻译即可
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func robotSim(commands []int, obstacles [][]int) int {
|
||
m := make(map[[2]int]struct{})
|
||
for _, v := range obstacles {
|
||
if len(v) != 0 {
|
||
m[[2]int{v[0], v[1]}] = struct{}{}
|
||
}
|
||
}
|
||
directX := []int{0, 1, 0, -1}
|
||
directY := []int{1, 0, -1, 0}
|
||
direct, x, y := 0, 0, 0
|
||
result := 0
|
||
for _, c := range commands {
|
||
if c == -2 {
|
||
direct = (direct + 3) % 4
|
||
continue
|
||
}
|
||
if c == -1 {
|
||
direct = (direct + 1) % 4
|
||
continue
|
||
}
|
||
for ; c > 0; c-- {
|
||
nextX := x + directX[direct]
|
||
nextY := y + directY[direct]
|
||
if _, ok := m[[2]int{nextX, nextY}]; ok {
|
||
break
|
||
}
|
||
tmpResult := nextX*nextX + nextY*nextY
|
||
if tmpResult > result {
|
||
result = tmpResult
|
||
}
|
||
x = nextX
|
||
y = nextY
|
||
}
|
||
}
|
||
return result
|
||
}
|
||
``` |