mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-07 09:54:57 +08:00
147 lines
5.0 KiB
Markdown
147 lines
5.0 KiB
Markdown
# [622. Design Circular Queue](https://leetcode.com/problems/design-circular-queue/)
|
||
|
||
|
||
## 题目
|
||
|
||
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
|
||
|
||
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
|
||
|
||
Implementation the `MyCircularQueue` class:
|
||
|
||
- `MyCircularQueue(k)` Initializes the object with the size of the queue to be `k`.
|
||
- `int Front()` Gets the front item from the queue. If the queue is empty, return `1`.
|
||
- `int Rear()` Gets the last item from the queue. If the queue is empty, return `1`.
|
||
- `boolean enQueue(int value)` Inserts an element into the circular queue. Return `true` if the operation is successful.
|
||
- `boolean deQueue()` Deletes an element from the circular queue. Return `true` if the operation is successful.
|
||
- `boolean isEmpty()` Checks whether the circular queue is empty or not.
|
||
- `boolean isFull()` Checks whether the circular queue is full or not.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input
|
||
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
|
||
[[3], [1], [2], [3], [4], [], [], [], [4], []]
|
||
Output
|
||
[null, true, true, true, false, 3, true, true, true, 4]
|
||
|
||
Explanation
|
||
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
|
||
myCircularQueue.enQueue(1); // return True
|
||
myCircularQueue.enQueue(2); // return True
|
||
myCircularQueue.enQueue(3); // return True
|
||
myCircularQueue.enQueue(4); // return False
|
||
myCircularQueue.Rear(); // return 3
|
||
myCircularQueue.isFull(); // return True
|
||
myCircularQueue.deQueue(); // return True
|
||
myCircularQueue.enQueue(4); // return True
|
||
myCircularQueue.Rear(); // return 4
|
||
|
||
```
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= k <= 1000`
|
||
- `0 <= value <= 1000`
|
||
- At most `3000` calls will be made to `enQueue`, `deQueue`, `Front`, `Rear`, `isEmpty`, and `isFull`.
|
||
|
||
**Follow up:**
|
||
|
||
Could you solve the problem without using the built-in queue?
|
||
|
||
## 题目大意
|
||
|
||
设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。
|
||
|
||
循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。
|
||
|
||
你的实现应该支持如下操作:
|
||
|
||
- MyCircularQueue(k): 构造器,设置队列长度为 k 。
|
||
- Front: 从队首获取元素。如果队列为空,返回 -1 。
|
||
- Rear: 获取队尾元素。如果队列为空,返回 -1 。
|
||
- enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
|
||
- deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
|
||
- isEmpty(): 检查循环队列是否为空。
|
||
- isFull(): 检查循环队列是否已满。
|
||
|
||
## 解题思路
|
||
|
||
- 简单题。设计一个环形队列,底层用数组实现。额外维护 4 个变量,队列的总 cap,队列当前的 size,前一元素下标 left,后一个元素下标 right。每添加一个元素便维护 left,right,size,下标需要对 cap 取余,因为超过 cap 大小之后,需要循环存储。代码实现没有难度,具体sh见下面代码。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
type MyCircularQueue struct {
|
||
cap int
|
||
size int
|
||
queue []int
|
||
left int
|
||
right int
|
||
}
|
||
|
||
func Constructor(k int) MyCircularQueue {
|
||
return MyCircularQueue{cap: k, size: 0, left: 0, right: 0, queue: make([]int, k)}
|
||
}
|
||
|
||
func (this *MyCircularQueue) EnQueue(value int) bool {
|
||
if this.size == this.cap {
|
||
return false
|
||
}
|
||
this.size++
|
||
this.queue[this.right] = value
|
||
this.right++
|
||
this.right %= this.cap
|
||
return true
|
||
|
||
}
|
||
|
||
func (this *MyCircularQueue) DeQueue() bool {
|
||
if this.size == 0 {
|
||
return false
|
||
}
|
||
this.size--
|
||
this.left++
|
||
this.left %= this.cap
|
||
return true
|
||
}
|
||
|
||
func (this *MyCircularQueue) Front() int {
|
||
if this.size == 0 {
|
||
return -1
|
||
}
|
||
return this.queue[this.left]
|
||
}
|
||
|
||
func (this *MyCircularQueue) Rear() int {
|
||
if this.size == 0 {
|
||
return -1
|
||
}
|
||
if this.right == 0 {
|
||
return this.queue[this.cap-1]
|
||
}
|
||
return this.queue[this.right-1]
|
||
}
|
||
|
||
func (this *MyCircularQueue) IsEmpty() bool {
|
||
return this.size == 0
|
||
}
|
||
|
||
func (this *MyCircularQueue) IsFull() bool {
|
||
return this.size == this.cap
|
||
}
|
||
|
||
/**
|
||
* Your MyCircularQueue object will be instantiated and called as such:
|
||
* obj := Constructor(k);
|
||
* param_1 := obj.EnQueue(value);
|
||
* param_2 := obj.DeQueue();
|
||
* param_3 := obj.Front();
|
||
* param_4 := obj.Rear();
|
||
* param_5 := obj.IsEmpty();
|
||
* param_6 := obj.IsFull();
|
||
*/
|
||
``` |