Files
2020-08-09 00:39:24 +08:00

62 lines
2.7 KiB
Markdown
Executable File
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [436. Find Right Interval](https://leetcode.com/problems/find-right-interval/)
## 题目
Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
**Note:**
1. You may assume the interval's end point is always bigger than its start point.
2. You may assume none of these intervals have the same start point.
**Example 1:**
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
**Example 2:**
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.
**Example 3:**
Input: [ [1,4], [2,3], [3,4] ]
Output: [-1, 2, -1]
Explanation: There is no satisfied "right" interval for [1,4] and [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point.
**NOTE:** input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.
## 题目大意
给定一组区间,对于每一个区间 i检查是否存在一个区间 j它的起始点大于或等于区间 i 的终点,这可以称为 j 在 i 的“右侧”。
对于任何区间你需要存储的满足条件的区间 j 的最小索引,这意味着区间 j 有最小的起始点可以使其成为“右侧”区间。如果区间 j 不存在,则将区间 i 存储为 -1。最后你需要输出一个值为存储的区间值的数组。
注意:
- 你可以假设区间的终点总是大于它的起始点。
- 你可以假定这些区间都不具有相同的起始点。
## 解题思路
- 给出一个 `interval` 的 数组,要求找到每个 `interval` 在它右边第一个 `interval` 的下标。A 区间在 B 区间的右边A 区间的左边界的值大于等于 B 区间的右边界。
- 这一题很明显可以用二分搜索来解答。先将 `interval` 数组排序,然后针对每个 `interval`,用二分搜索搜索大于等于 `interval` 右边界值的 `interval`。如果找到就把下标存入最终数组中,如果没有找到,把 `-1` 存入最终数组中。