mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-06 17:44:10 +08:00
76 lines
3.7 KiB
Markdown
Executable File
76 lines
3.7 KiB
Markdown
Executable File
# [1111. Maximum Nesting Depth of Two Valid Parentheses Strings](https://leetcode.com/problems/maximum-nesting-depth-of-two-valid-parentheses-strings/)
|
||
|
||
|
||
## 题目
|
||
|
||
A string is a *valid parentheses string* (denoted VPS) if and only if it consists of `"("` and `")"` characters only, and:
|
||
|
||
- It is the empty string, or
|
||
- It can be written as `AB` (`A` concatenated with `B`), where `A` and `B` are VPS's, or
|
||
- It can be written as `(A)`, where `A` is a VPS.
|
||
|
||
We can similarly define the *nesting depth* `depth(S)` of any VPS `S` as follows:
|
||
|
||
- `depth("") = 0`
|
||
- `depth(A + B) = max(depth(A), depth(B))`, where `A` and `B` are VPS's
|
||
- `depth("(" + A + ")") = 1 + depth(A)`, where `A` is a VPS.
|
||
|
||
For example, `""`, `"()()"`, and `"()(()())"` are VPS's (with nesting depths 0, 1, and 2), and `")("` and `"(()"` are not VPS's.
|
||
|
||
Given a VPS seq, split it into two disjoint subsequences `A` and `B`, such that `A` and `B` are VPS's (and `A.length + B.length = seq.length`).
|
||
|
||
Now choose **any** such `A` and `B` such that `max(depth(A), depth(B))` is the minimum possible value.
|
||
|
||
Return an `answer` array (of length `seq.length`) that encodes such a choice of `A` and `B`: `answer[i] = 0` if `seq[i]` is part of `A`, else `answer[i] = 1`. Note that even though multiple answers may exist, you may return any of them.
|
||
|
||
**Example 1:**
|
||
|
||
Input: seq = "(()())"
|
||
Output: [0,1,1,1,1,0]
|
||
|
||
**Example 2:**
|
||
|
||
Input: seq = "()(())()"
|
||
Output: [0,0,0,1,1,0,1,1]
|
||
|
||
**Constraints:**
|
||
|
||
- `1 <= seq.size <= 10000`
|
||
|
||
|
||
## 题目大意
|
||
|
||
|
||
有效括号字符串 仅由 "(" 和 ")" 构成,并符合下述几个条件之一:
|
||
|
||
- 空字符串
|
||
- 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
|
||
- 嵌套,可以记作 (A),其中 A 是有效括号字符串
|
||
|
||
类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):
|
||
|
||
- s 为空时,depth("") = 0
|
||
- s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
|
||
- s 为嵌套情况,depth("(" + A + ")") = 1 + depth(A),其中 A 是有效括号字符串
|
||
|
||
|
||
例如:"","()()",和 "()(()())" 都是有效括号字符串,嵌套深度分别为 0,1,2,而 ")(" 和 "(()" 都不是有效括号字符串。
|
||
|
||
|
||
|
||
给你一个有效括号字符串 seq,将其分成两个不相交的子序列 A 和 B,且 A 和 B 满足有效括号字符串的定义(注意:A.length + B.length = seq.length)。
|
||
|
||
现在,你需要从中选出 任意 一组有效括号字符串 A 和 B,使 max(depth(A), depth(B)) 的可能取值最小。
|
||
|
||
返回长度为 seq.length 答案数组 answer ,选择 A 还是 B 的编码规则是:如果 seq[i] 是 A 的一部分,那么 answer[i] = 0。否则,answer[i] = 1。即便有多个满足要求的答案存在,你也只需返回 一个。
|
||
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 给出一个括号字符串。选出 A 部分和 B 部分,使得 `max(depth(A), depth(B))` 值最小。在最终的数组中输出 0 和 1,0 标识是 A 部分,1 标识是 B 部分。
|
||
- 这一题想要 `max(depth(A), depth(B))` 值最小,可以使用贪心思想。如果 A 部分和 B 部分都尽快括号匹配,不深层次嵌套,那么总的层次就会变小。只要让嵌套的括号中属于 A 的和属于 B 的间隔排列即可。例如:“`(((())))`”,上面的字符串的嵌套深度是 4,按照上述的贪心思想,则标记为 0101 1010。
|
||
- 这一题也可以用二分的思想来解答。把深度平分给 A 部分和 B 部分。
|
||
- 第一次遍历,先计算最大深度
|
||
- 第二次遍历,把深度小于等于最大深度一半的括号标记为 0(给 A 部分),否则标记为 1(给 B 部分)
|