mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 00:25:22 +08:00
83 lines
2.5 KiB
Markdown
Executable File
83 lines
2.5 KiB
Markdown
Executable File
# [898. Bitwise ORs of Subarrays](https://leetcode.com/problems/bitwise-ors-of-subarrays/)
|
||
|
||
|
||
## 题目
|
||
|
||
We have an array `A` of non-negative integers.
|
||
|
||
For every (contiguous) subarray `B = [A[i], A[i+1], ..., A[j]]` (with `i <= j`), we take the bitwise OR of all the elements in `B`, obtaining a result `A[i] | A[i+1] | ... | A[j]`.
|
||
|
||
Return the number of possible results. (Results that occur more than once are only counted once in the final answer.)
|
||
|
||
**Example 1:**
|
||
|
||
Input: [0]
|
||
Output: 1
|
||
Explanation:
|
||
There is only one possible result: 0.
|
||
|
||
**Example 2:**
|
||
|
||
Input: [1,1,2]
|
||
Output: 3
|
||
Explanation:
|
||
The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
|
||
These yield the results 1, 1, 2, 1, 3, 3.
|
||
There are 3 unique values, so the answer is 3.
|
||
|
||
**Example 3:**
|
||
|
||
Input: [1,2,4]
|
||
Output: 6
|
||
Explanation:
|
||
The possible results are 1, 2, 3, 4, 6, and 7.
|
||
|
||
**Note:**
|
||
|
||
1. `1 <= A.length <= 50000`
|
||
2. `0 <= A[i] <= 10^9`
|
||
|
||
|
||
## 题目大意
|
||
|
||
我们有一个非负整数数组 A。对于每个(连续的)子数组 B = [A[i], A[i+1], ..., A[j]] ( i <= j),我们对 B 中的每个元素进行按位或操作,获得结果 A[i] | A[i+1] | ... | A[j]。返回可能结果的数量。(多次出现的结果在最终答案中仅计算一次。)
|
||
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 给出一个数组,要求求出这个数组所有的子数组中,每个集合内所有数字取 `|` 运算以后,不同结果的种类数。
|
||
- 这道题可以这样考虑,第一步,先考虑所有的子数组如何得到,以 `[001, 011, 100, 110, 101]` 为例,所有的子数组集合如下:
|
||
|
||
```c
|
||
[001]
|
||
[001 011] [011]
|
||
[001 011 100] [011 100] [100]
|
||
[001 011 100 110] [011 100 110] [100 110] [110]
|
||
[001 011 100 110 101] [011 100 110 101] [100 110 101] [110 101] [101]
|
||
```
|
||
|
||
可以发现,从左往右遍历原数组,每次新来的一个元素,依次加入到之前已经生成过的集合中,再以自己为单独集合。这样就可以生成原数组的所有子集。
|
||
|
||
- 第二步,将每一行的子集内的所有元素都进行 `|` 运算,得到:
|
||
|
||
```c
|
||
001
|
||
011 011
|
||
111 111 100
|
||
111 111 110 110
|
||
111 111 111 111 101
|
||
```
|
||
|
||
- 第三步,去重:
|
||
|
||
```c
|
||
001
|
||
011
|
||
111 100
|
||
111 110
|
||
111 101
|
||
```
|
||
|
||
由于二进制位不超过 32 位,所以这里每一行最多不会超过 32 个数。所以最终时间复杂度不会超过 O(32 N),即 O(K * N)。最后将这每一行的数字都放入最终的 map 中去重即可。
|