mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 08:27:30 +08:00
33 lines
1.2 KiB
Markdown
Executable File
33 lines
1.2 KiB
Markdown
Executable File
# [343. Integer Break](https://leetcode.com/problems/integer-break/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given a positive integer n, break it into the sum of **at least** two positive integers and maximize the product of those integers. Return the maximum product you can get.
|
||
|
||
**Example 1:**
|
||
|
||
Input: 2
|
||
Output: 1
|
||
Explanation: 2 = 1 + 1, 1 × 1 = 1.
|
||
|
||
**Example 2:**
|
||
|
||
Input: 10
|
||
Output: 36
|
||
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
|
||
|
||
**Note**: You may assume that n is not less than 2 and not larger than 58.
|
||
|
||
|
||
## 题目大意
|
||
|
||
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 这一题是 DP 的题目,将一个数字分成多个数字之和,至少分为 2 个数字之和,求解分解出来的数字乘积最大是多少。
|
||
- 这一题的动态转移方程是 `dp[i] = max(dp[i], j * (i - j), j * dp[i-j])` ,一个数分解成 `j` 和 `i - j` 两个数字,或者分解成 `j` 和 `更多的分解数`,`更多的分解数`即是 `dp[i-j]`,由于 `dp[i-j]` 下标小于 `i` ,所以 `dp[i-j]` 在计算 `dp[i]` 的时候一定计算出来了。
|
||
|