mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 16:36:41 +08:00
31 lines
1.1 KiB
Markdown
Executable File
31 lines
1.1 KiB
Markdown
Executable File
# [152. Maximum Product Subarray](https://leetcode.com/problems/maximum-product-subarray/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given an integer array `nums`, find the contiguous subarray within an array (containing at least one number) which has the largest product.
|
||
|
||
**Example 1:**
|
||
|
||
Input: [2,3,-2,4]
|
||
Output: 6
|
||
Explanation: [2,3] has the largest product 6.
|
||
|
||
**Example 2:**
|
||
|
||
Input: [-2,0,-1]
|
||
Output: 0
|
||
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
|
||
|
||
|
||
## 题目大意
|
||
|
||
给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数)。
|
||
|
||
|
||
## 解题思路
|
||
|
||
- 给出一个数组,要求找出这个数组中连续元素乘积最大的值。
|
||
- 这一题是 DP 的题,状态转移方程是:最大值是 `Max(f(n)) = Max( Max(f(n-1)) * n, Min(f(n-1)) * n)`;最小值是 `Min(f(n)) = Min( Max(f(n-1)) * n, Min(f(n-1)) * n)`。只要动态维护这两个值,如果最后一个数是负数,最大值就在负数 * 最小值中产生,如果最后一个数是正数,最大值就在正数 * 最大值中产生。
|
||
|