添加 problem 990

This commit is contained in:
YDZ
2019-08-08 21:59:04 +08:00
parent e398dedbde
commit f53e5114d6
3 changed files with 149 additions and 0 deletions

View File

@ -0,0 +1,22 @@
package leetcode
func equationsPossible(equations []string) bool {
if len(equations) == 0 {
return false
}
uf := UnionFind{}
uf.init(26)
for _, equ := range equations {
if equ[1] == '=' && equ[2] == '=' {
uf.union(int(equ[0]-'a'), int(equ[3]-'a'))
}
}
for _, equ := range equations {
if equ[1] == '!' && equ[2] == '=' {
if uf.find(int(equ[0]-'a')) == uf.find(int(equ[3]-'a')) {
return false
}
}
}
return true
}

View File

@ -0,0 +1,62 @@
package leetcode
import (
"fmt"
"testing"
)
type question990 struct {
para990
ans990
}
// para 是参数
// one 代表第一个参数
type para990 struct {
a []string
}
// ans 是答案
// one 代表第一个答案
type ans990 struct {
one bool
}
func Test_Problem990(t *testing.T) {
qs := []question990{
question990{
para990{[]string{"a==b", "b!=a"}},
ans990{false},
},
question990{
para990{[]string{"b==a", "a==b"}},
ans990{true},
},
question990{
para990{[]string{"a==b", "b==c", "a==c"}},
ans990{true},
},
question990{
para990{[]string{"a==b", "b!=c", "c==a"}},
ans990{false},
},
question990{
para990{[]string{"c==c", "b==d", "x!=z"}},
ans990{true},
},
}
fmt.Printf("------------------------Leetcode Problem 990------------------------\n")
for _, q := range qs {
_, p := q.ans990, q.para990
fmt.Printf("【input】:%v 【output】:%v\n", p, equationsPossible(p.a))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,65 @@
# [990. Satisfiability of Equality Equations](https://leetcode.com/problems/satisfiability-of-equality-equations/)
## 题目:
Given an array equations of strings that represent relationships between variables, each string `equations[i]` has length `4` and takes one of two different forms: `"a==b"` or `"a!=b"`. Here, `a` and `b` are lowercase letters (not necessarily different) that represent one-letter variable names.
Return `true` if and only if it is possible to assign integers to variable names so as to satisfy all the given equations.
**Example 1:**
Input: ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second. There is no way to assign the variables to satisfy both equations.
**Example 2:**
Input: ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
**Example 3:**
Input: ["a==b","b==c","a==c"]
Output: true
**Example 4:**
Input: ["a==b","b!=c","c==a"]
Output: false
**Example 5:**
Input: ["c==c","b==d","x!=z"]
Output: true
**Note:**
1. `1 <= equations.length <= 500`
2. `equations[i].length == 4`
3. `equations[i][0]` and `equations[i][3]` are lowercase letters
4. `equations[i][1]` is either `'='` or `'!'`
5. `equations[i][2]` is `'='`
## 题目大意
给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4并采用两种不同的形式之一"a==b" 或 "a!=b"。在这里a 和 b 是小写字母不一定不同表示单字母变量名。只有当可以将整数分配给变量名以便满足所有给定的方程时才返回 true否则返回 false。 
提示:
1. 1 <= equations.length <= 500
2. equations[i].length == 4
3. equations[i][0] 和 equations[i][3] 是小写字母
4. equations[i][1] 要么是 '=',要么是 '!'
5. equations[i][2] 是 '='
## 解题思路
- 给出一个字符串数组,数组里面给出的是一些字母的关系,只有 `'=='``'! ='` 两种关系。问给出的这些关系中是否存在悖论?
- 这一题是简单的并查集的问题。先将所有 `'=='` 关系的字母 `union()` 起来,然后再一一查看 `'! ='` 关系中是否有 `'=='` 关系的组合,如果有,就返回 `false`,如果遍历完都没有找到,则返回 `true`