mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-06 17:44:10 +08:00
fix 0978: update a clearer solution
This commit is contained in:
@ -1,14 +1,14 @@
|
||||
package leetcode
|
||||
|
||||
// 解法一 模拟法
|
||||
func maxTurbulenceSize(A []int) int {
|
||||
func maxTurbulenceSize(arr []int) int {
|
||||
inc, dec := 1, 1
|
||||
maxLen := min(1, len(A))
|
||||
for i := 1; i < len(A); i++ {
|
||||
if A[i-1] < A[i] {
|
||||
maxLen := min(1, len(arr))
|
||||
for i := 1; i < len(arr); i++ {
|
||||
if arr[i-1] < arr[i] {
|
||||
inc = dec + 1
|
||||
dec = 1
|
||||
} else if A[i-1] > A[i] {
|
||||
} else if arr[i-1] > arr[i] {
|
||||
dec = inc + 1
|
||||
inc = 1
|
||||
} else {
|
||||
@ -35,23 +35,21 @@ func min(a int, b int) int {
|
||||
}
|
||||
|
||||
// 解法二 滑动窗口
|
||||
func maxTurbulenceSize1(A []int) int {
|
||||
if len(A) == 1 {
|
||||
return 1
|
||||
func maxTurbulenceSize1(arr []int) int {
|
||||
var maxLength int
|
||||
if len(arr) == 2 && arr[0] != arr[1] {
|
||||
maxLength = 2
|
||||
} else {
|
||||
maxLength = 1
|
||||
}
|
||||
// flag > 0 代表下一个数要大于前一个数,flag < 0 代表下一个数要小于前一个数
|
||||
res, left, right, flag, lastNum := 0, 0, 0, A[1]-A[0], A[0]
|
||||
for left < len(A) {
|
||||
if right < len(A)-1 && ((A[right+1] > lastNum && flag > 0) || (A[right+1] < lastNum && flag < 0) || (right == left)) {
|
||||
right++
|
||||
flag = lastNum - A[right]
|
||||
lastNum = A[right]
|
||||
} else {
|
||||
if flag != 0 {
|
||||
res = max(res, right-left+1)
|
||||
}
|
||||
left++
|
||||
left := 0
|
||||
for right := 2; right < len(arr); right++ {
|
||||
if arr[right] == arr[right-1] {
|
||||
left = right
|
||||
} else if (arr[right]-arr[right-1])^(arr[right-1]-arr[right-2]) >= 0 {
|
||||
left = right - 1
|
||||
}
|
||||
maxLength = max(maxLength, right-left+1)
|
||||
}
|
||||
return max(res, 1)
|
||||
return maxLength
|
||||
}
|
||||
|
@ -1,58 +1,58 @@
|
||||
# [978. Longest Turbulent Subarray](https://leetcode.com/problems/longest-turbulent-subarray/)
|
||||
|
||||
## 题目
|
||||
|
||||
A subarray `A[i], A[i+1], ..., A[j]` of `A` is said to be *turbulent* if and only if:
|
||||
|
||||
- For `i <= k < j`, `A[k] > A[k+1]` when `k` is odd, and `A[k] < A[k+1]` when `k` is even;
|
||||
- **OR**, for `i <= k < j`, `A[k] > A[k+1]` when `k` is even, and `A[k] < A[k+1]` when `k` is odd.
|
||||
|
||||
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
|
||||
|
||||
Return the **length** of a maximum size turbulent subarray of A.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
Input: [9,4,2,10,7,8,8,1,9]
|
||||
Output: 5
|
||||
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
|
||||
|
||||
**Example 2:**
|
||||
|
||||
Input: [4,8,12,16]
|
||||
Output: 2
|
||||
|
||||
**Example 3:**
|
||||
|
||||
Input: [100]
|
||||
Output: 1
|
||||
|
||||
**Note:**
|
||||
|
||||
1. `1 <= A.length <= 40000`
|
||||
2. `0 <= A[i] <= 10^9`
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
|
||||
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
|
||||
|
||||
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
|
||||
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
|
||||
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
|
||||
|
||||
返回 A 的最大湍流子数组的长度。
|
||||
|
||||
提示:
|
||||
|
||||
- 1 <= A.length <= 40000
|
||||
- 0 <= A[i] <= 10^9
|
||||
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
|
||||
- 给出一个数组,要求找出“摆动数组”的最大长度。所谓“摆动数组”的意思是,元素一大一小间隔的。
|
||||
- 这一题可以用滑动窗口来解答。用一个变量记住下次出现的元素需要大于还是需要小于前一个元素。也可以用模拟的方法,用两个变量分别记录上升和下降数字的长度。一旦元素相等了,上升和下降数字长度都置为 1,其他时候按照上升和下降的关系增加队列长度即可,最后输出动态维护的最长长度。
|
||||
# [978. Longest Turbulent Subarray](https://leetcode.com/problems/longest-turbulent-subarray/)
|
||||
|
||||
## 题目
|
||||
|
||||
A subarray `A[i], A[i+1], ..., A[j]` of `A` is said to be *turbulent* if and only if:
|
||||
|
||||
- For `i <= k < j`, `A[k] > A[k+1]` when `k` is odd, and `A[k] < A[k+1]` when `k` is even;
|
||||
- **OR**, for `i <= k < j`, `A[k] > A[k+1]` when `k` is even, and `A[k] < A[k+1]` when `k` is odd.
|
||||
|
||||
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
|
||||
|
||||
Return the **length** of a maximum size turbulent subarray of A.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
Input: [9,4,2,10,7,8,8,1,9]
|
||||
Output: 5
|
||||
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
|
||||
|
||||
**Example 2:**
|
||||
|
||||
Input: [4,8,12,16]
|
||||
Output: 2
|
||||
|
||||
**Example 3:**
|
||||
|
||||
Input: [100]
|
||||
Output: 1
|
||||
|
||||
**Note:**
|
||||
|
||||
1. `1 <= A.length <= 40000`
|
||||
2. `0 <= A[i] <= 10^9`
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
|
||||
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
|
||||
|
||||
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
|
||||
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
|
||||
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
|
||||
|
||||
返回 A 的最大湍流子数组的长度。
|
||||
|
||||
提示:
|
||||
|
||||
- 1 <= A.length <= 40000
|
||||
- 0 <= A[i] <= 10^9
|
||||
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
|
||||
- 给出一个数组,要求找出“摆动数组”的最大长度。所谓“摆动数组”的意思是,元素一大一小间隔的。
|
||||
- 这一题可以用滑动窗口来解答。用相邻元素差的乘积大于零(a ^ b >= 0 说明a b乘积大于零)来判断是否是湍流, 如果是,那么扩大窗口。否则窗口缩小为0,开始新的一个窗口。
|
@ -55,8 +55,7 @@ Return the **length** of a maximum size turbulent subarray of A.
|
||||
|
||||
|
||||
- 给出一个数组,要求找出“摆动数组”的最大长度。所谓“摆动数组”的意思是,元素一大一小间隔的。
|
||||
- 这一题可以用滑动窗口来解答。用一个变量记住下次出现的元素需要大于还是需要小于前一个元素。也可以用模拟的方法,用两个变量分别记录上升和下降数字的长度。一旦元素相等了,上升和下降数字长度都置为 1,其他时候按照上升和下降的关系增加队列长度即可,最后输出动态维护的最长长度。
|
||||
|
||||
- 这一题可以用滑动窗口来解答。用相邻元素差的乘积大于零(a ^ b >= 0 说明a b乘积大于零)来判断是否是湍流, 如果是,那么扩大窗口。否则窗口缩小为0,开始新的一个窗口。
|
||||
|
||||
## 代码
|
||||
|
||||
@ -65,14 +64,14 @@ Return the **length** of a maximum size turbulent subarray of A.
|
||||
package leetcode
|
||||
|
||||
// 解法一 模拟法
|
||||
func maxTurbulenceSize(A []int) int {
|
||||
func maxTurbulenceSize(arr []int) int {
|
||||
inc, dec := 1, 1
|
||||
maxLen := min(1, len(A))
|
||||
for i := 1; i < len(A); i++ {
|
||||
if A[i-1] < A[i] {
|
||||
maxLen := min(1, len(arr))
|
||||
for i := 1; i < len(arr); i++ {
|
||||
if arr[i-1] < arr[i] {
|
||||
inc = dec + 1
|
||||
dec = 1
|
||||
} else if A[i-1] > A[i] {
|
||||
} else if arr[i-1] > arr[i] {
|
||||
dec = inc + 1
|
||||
inc = 1
|
||||
} else {
|
||||
@ -85,25 +84,23 @@ func maxTurbulenceSize(A []int) int {
|
||||
}
|
||||
|
||||
// 解法二 滑动窗口
|
||||
func maxTurbulenceSize1(A []int) int {
|
||||
if len(A) == 1 {
|
||||
return 1
|
||||
func maxTurbulenceSize1(arr []int) int {
|
||||
var maxLength int
|
||||
if len(arr) == 2 && arr[0] != arr[1] {
|
||||
maxLength = 2
|
||||
} else {
|
||||
maxLength = 1
|
||||
}
|
||||
// flag > 0 代表下一个数要大于前一个数,flag < 0 代表下一个数要小于前一个数
|
||||
res, left, right, flag, lastNum := 0, 0, 0, A[1]-A[0], A[0]
|
||||
for left < len(A) {
|
||||
if right < len(A)-1 && ((A[right+1] > lastNum && flag > 0) || (A[right+1] < lastNum && flag < 0) || (right == left)) {
|
||||
right++
|
||||
flag = lastNum - A[right]
|
||||
lastNum = A[right]
|
||||
} else {
|
||||
if flag != 0 {
|
||||
res = max(res, right-left+1)
|
||||
}
|
||||
left++
|
||||
left := 0
|
||||
for right := 2; right < len(arr); right++ {
|
||||
if arr[right] == arr[right-1] {
|
||||
left = right
|
||||
} else if (arr[right]-arr[right-1])^(arr[right-1]-arr[right-2]) >= 0 {
|
||||
left = right - 1
|
||||
}
|
||||
maxLength = max(maxLength, right-left+1)
|
||||
}
|
||||
return max(res, 1)
|
||||
return maxLength
|
||||
}
|
||||
|
||||
```
|
||||
|
Reference in New Issue
Block a user