mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-04 16:12:47 +08:00
添加 problem 74
This commit is contained in:
@ -0,0 +1,19 @@
|
||||
package leetcode
|
||||
|
||||
func searchMatrix(matrix [][]int, target int) bool {
|
||||
if len(matrix) == 0 {
|
||||
return false
|
||||
}
|
||||
m, low, high := len(matrix[0]), 0, len(matrix[0])*len(matrix)-1
|
||||
for low <= high {
|
||||
mid := low + (high-low)>>1
|
||||
if matrix[mid/m][mid%m] == target {
|
||||
return true
|
||||
} else if matrix[mid/m][mid%m] > target {
|
||||
high = mid - 1
|
||||
} else {
|
||||
low = mid + 1
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
@ -0,0 +1,48 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type question74 struct {
|
||||
para74
|
||||
ans74
|
||||
}
|
||||
|
||||
// para 是参数
|
||||
// one 代表第一个参数
|
||||
type para74 struct {
|
||||
matrix [][]int
|
||||
target int
|
||||
}
|
||||
|
||||
// ans 是答案
|
||||
// one 代表第一个答案
|
||||
type ans74 struct {
|
||||
one bool
|
||||
}
|
||||
|
||||
func Test_Problem74(t *testing.T) {
|
||||
|
||||
qs := []question74{
|
||||
|
||||
question74{
|
||||
para74{[][]int{[]int{1, 3, 5, 7}, []int{10, 11, 16, 20}, []int{23, 30, 34, 50}}, 3},
|
||||
ans74{true},
|
||||
},
|
||||
|
||||
question74{
|
||||
para74{[][]int{[]int{1, 3, 5, 7}, []int{10, 11, 16, 20}, []int{23, 30, 34, 50}}, 13},
|
||||
ans74{false},
|
||||
},
|
||||
}
|
||||
|
||||
fmt.Printf("------------------------Leetcode Problem 74------------------------\n")
|
||||
|
||||
for _, q := range qs {
|
||||
_, p := q.ans74, q.para74
|
||||
fmt.Printf("【input】:%v 【output】:%v\n", p, searchMatrix(p.matrix, p.target))
|
||||
}
|
||||
fmt.Printf("\n\n\n")
|
||||
}
|
46
Algorithms/0074. Search a 2D Matrix/README.md
Executable file
46
Algorithms/0074. Search a 2D Matrix/README.md
Executable file
@ -0,0 +1,46 @@
|
||||
# [74. Search a 2D Matrix](https://leetcode.com/problems/search-a-2d-matrix/)
|
||||
|
||||
|
||||
## 题目:
|
||||
|
||||
Write an efficient algorithm that searches for a value in an *m* x *n* matrix. This matrix has the following properties:
|
||||
|
||||
- Integers in each row are sorted from left to right.
|
||||
- The first integer of each row is greater than the last integer of the previous row.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
Input:
|
||||
matrix = [
|
||||
[1, 3, 5, 7],
|
||||
[10, 11, 16, 20],
|
||||
[23, 30, 34, 50]
|
||||
]
|
||||
target = 3
|
||||
Output: true
|
||||
|
||||
**Example 2:**
|
||||
|
||||
Input:
|
||||
matrix = [
|
||||
[1, 3, 5, 7],
|
||||
[10, 11, 16, 20],
|
||||
[23, 30, 34, 50]
|
||||
]
|
||||
target = 13
|
||||
Output: false
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
|
||||
|
||||
- 每行中的整数从左到右按升序排列。
|
||||
- 每行的第一个整数大于前一行的最后一个整数。
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
|
||||
- 给出一个二维矩阵,矩阵的特点是随着矩阵的下标增大而增大。要求设计一个算法能在这个矩阵中高效的找到一个数,如果找到就输出 true,找不到就输出 false。
|
||||
- 虽然是一个二维矩阵,但是由于它特殊的有序性,所以完全可以按照下标把它看成一个一维矩阵,只不过需要行列坐标转换。最后利用二分搜索直接搜索即可。
|
Reference in New Issue
Block a user