add leetcode logo

This commit is contained in:
YDZ
2020-08-09 00:57:48 +08:00
parent 8fe1ae5bd1
commit 52489387d3
9 changed files with 577 additions and 63 deletions

View File

@ -25,6 +25,10 @@
<img src="https://travis-ci.org/halfrost/LeetCode-Go.svg?branch=master"> <img src="https://travis-ci.org/halfrost/LeetCode-Go.svg?branch=master">
</p> </p>
<p align='center'>
支持 Progressive Web Apps 的题解电子书《LeetCode Cookbook》在线阅读 <a href="https://books.halfrost.com/leetcode/" rel="nofollow">地址</a>
</p>
## Data Structures ## Data Structures
> 标识了 ✅ 的专题是完成所有题目了的,没有标识的是还没有做完所有题目的 > 标识了 ✅ 的专题是完成所有题目了的,没有标识的是还没有做完所有题目的

View File

@ -56,7 +56,7 @@ Find the total area covered by all `rectangles` in the plane. Since the answer
需要注意的一点是,**每次 query 的结果并不一定是连续线段**。如上图最右边的图,中间有一段是可能出现镂空的。这种情况看似复杂,其实很简单,因为每段线段树的线段代表的权值高度是不同的,每次 query 最大高度得到的结果已经考虑了中间可能有镂空的情况了。 需要注意的一点是,**每次 query 的结果并不一定是连续线段**。如上图最右边的图,中间有一段是可能出现镂空的。这种情况看似复杂,其实很简单,因为每段线段树的线段代表的权值高度是不同的,每次 query 最大高度得到的结果已经考虑了中间可能有镂空的情况了。
- 具体做法,先把各个矩形在 Y 轴方向上离散化,这里的**线段树叶子节点不再是一个点了,而是一个区间长度为 1 的区间段** - 具体做法,先把各个矩形在 Y 轴方向上离散化,这里的**线段树叶子节点不再是一个点了,而是一个区间长度为 1 的区间段**
![](https://img.halfrost.com/Leetcode/leetcode_850_0.png) ![](https://img.halfrost.com/Leetcode/leetcode_850_0.png)

View File

@ -73,6 +73,6 @@ Each `query(...)` returns the element in `arr[left], arr[left+1], ..., arr[ri
return segmentItem{candidate: j.candidate, count: j.count - i.count} return segmentItem{candidate: j.candidate, count: j.count - i.count}
} }
直到根节点的 candidate 和 count 都填满。**注意,这里的 count 并不是元素出现的总次数,而是摩尔投票中坚持没有被投出去的轮数**当线段树构建完成以后就可以开始查询任意区间内的众数了candidate 即为众数。接下来还要确定众数是否满足 `threshold` 的条件。 直到根节点的 candidate 和 count 都填满。**注意,这里的 count 并不是元素出现的总次数,而是摩尔投票中坚持没有被投出去的轮数**当线段树构建完成以后就可以开始查询任意区间内的众数了candidate 即为众数。接下来还要确定众数是否满足 `threshold` 的条件。
- 用一个字典记录每个元素在数组中出现位置的下标,例如上述这个例子,用 map 记录下标count = map[1:[0 1 4 5] 2:[2 3]]。由于下标在记录过程中是递增的,所以满足二分查找的条件。利用这个字典就可以查出在任意区间内,指定元素出现的次数。例如这里要查找 1 在 [0,5] 区间内出现的个数,那么利用 2 次二分查找,分别找到 `lowerBound``upperBound`,在 [lowerBoundupperBound) 区间内,都是元素 1 ,那么区间长度即是该元素重复出现的次数,和 `threshold` 比较,如果 ≥ `threshold` 说明找到了答案,否则没有找到就输出 -1 。 - 用一个字典记录每个元素在数组中出现位置的下标,例如上述这个例子,用 map 记录下标count = map[1:[0 1 4 5] 2:[2 3]]。由于下标在记录过程中是递增的,所以满足二分查找的条件。利用这个字典就可以查出在任意区间内,指定元素出现的次数。例如这里要查找 1 在 [0,5] 区间内出现的个数,那么利用 2 次二分查找,分别找到 `lowerBound``upperBound`,在 [lowerBoundupperBound) 区间内,都是元素 1 ,那么区间长度即是该元素重复出现的次数,和 `threshold` 比较,如果 ≥ `threshold` 说明找到了答案,否则没有找到就输出 -1 。

View File

@ -56,7 +56,7 @@ Find the total area covered by all `rectangles` in the plane. Since the answer
需要注意的一点是,**每次 query 的结果并不一定是连续线段**。如上图最右边的图,中间有一段是可能出现镂空的。这种情况看似复杂,其实很简单,因为每段线段树的线段代表的权值高度是不同的,每次 query 最大高度得到的结果已经考虑了中间可能有镂空的情况了。 需要注意的一点是,**每次 query 的结果并不一定是连续线段**。如上图最右边的图,中间有一段是可能出现镂空的。这种情况看似复杂,其实很简单,因为每段线段树的线段代表的权值高度是不同的,每次 query 最大高度得到的结果已经考虑了中间可能有镂空的情况了。
- 具体做法,先把各个矩形在 Y 轴方向上离散化,这里的**线段树叶子节点不再是一个点了,而是一个区间长度为 1 的区间段** - 具体做法,先把各个矩形在 Y 轴方向上离散化,这里的**线段树叶子节点不再是一个点了,而是一个区间长度为 1 的区间段**
![](https://img.halfrost.com/Leetcode/leetcode_850_0.png) ![](https://img.halfrost.com/Leetcode/leetcode_850_0.png)

View File

@ -73,7 +73,7 @@ Each `query(...)` returns the element in `arr[left], arr[left+1], ..., arr[ri
return segmentItem{candidate: j.candidate, count: j.count - i.count} return segmentItem{candidate: j.candidate, count: j.count - i.count}
} }
直到根节点的 candidate 和 count 都填满。**注意,这里的 count 并不是元素出现的总次数,而是摩尔投票中坚持没有被投出去的轮数**当线段树构建完成以后就可以开始查询任意区间内的众数了candidate 即为众数。接下来还要确定众数是否满足 `threshold` 的条件。 直到根节点的 candidate 和 count 都填满。**注意,这里的 count 并不是元素出现的总次数,而是摩尔投票中坚持没有被投出去的轮数**当线段树构建完成以后就可以开始查询任意区间内的众数了candidate 即为众数。接下来还要确定众数是否满足 `threshold` 的条件。
- 用一个字典记录每个元素在数组中出现位置的下标,例如上述这个例子,用 map 记录下标count = map[1:[0 1 4 5] 2:[2 3]]。由于下标在记录过程中是递增的,所以满足二分查找的条件。利用这个字典就可以查出在任意区间内,指定元素出现的次数。例如这里要查找 1 在 [0,5] 区间内出现的个数,那么利用 2 次二分查找,分别找到 `lowerBound``upperBound`,在 [lowerBoundupperBound) 区间内,都是元素 1 ,那么区间长度即是该元素重复出现的次数,和 `threshold` 比较,如果 ≥ `threshold` 说明找到了答案,否则没有找到就输出 -1 。 - 用一个字典记录每个元素在数组中出现位置的下标,例如上述这个例子,用 map 记录下标count = map[1:[0 1 4 5] 2:[2 3]]。由于下标在记录过程中是递增的,所以满足二分查找的条件。利用这个字典就可以查出在任意区间内,指定元素出现的次数。例如这里要查找 1 在 [0,5] 区间内出现的个数,那么利用 2 次二分查找,分别找到 `lowerBound``upperBound`,在 [lowerBoundupperBound) 区间内,都是元素 1 ,那么区间长度即是该元素重复出现的次数,和 `threshold` 比较,如果 ≥ `threshold` 说明找到了答案,否则没有找到就输出 -1 。

View File

@ -36,7 +36,7 @@ type: docs
笔者是一个刚刚入行一年半的 gopher 新人,还请各位大佬多多指点小弟我。大学参加了 3 年 ACM-ICPC但是由于资质不高没有拿到一块金牌。所以在算法方面我对自己的评价算是新手吧。参加 ACM-ICPC 最大的收获是训练了思维能力,这种能力也会运用到生活中。其次是认识了很多国内很聪明的选手,看到了自己和他们的差距。最后,就是那 200 多页,有些自己都没有完全理解的,打印的密密麻麻的算法模板。知识学会了,终身都是自己的,没有学会,那些知识都是身外之物。 笔者是一个刚刚入行一年半的 gopher 新人,还请各位大佬多多指点小弟我。大学参加了 3 年 ACM-ICPC但是由于资质不高没有拿到一块金牌。所以在算法方面我对自己的评价算是新手吧。参加 ACM-ICPC 最大的收获是训练了思维能力,这种能力也会运用到生活中。其次是认识了很多国内很聪明的选手,看到了自己和他们的差距。最后,就是那 200 多页,有些自己都没有完全理解的,打印的密密麻麻的算法模板。知识学会了,终身都是自己的,没有学会,那些知识都是身外之物。
笔者从 2019 年 3 月 25 号开始刷题,到 2020 年 3 月 25 号,整整一年的时间。原计划是每天一题。实际上每天有时候不止一题,最终完成了 500+ 笔者从 2019 年 3 月 25 号开始刷题,到 2020 年 3 月 25 号,整整一年的时间。原计划是每天一题。实际上每天有时候不止一题,最终完成了 600+
![](https://img.halfrost.com/Blog/ArticleImage/2019_leetcode.png) ![](https://img.halfrost.com/Blog/ArticleImage/2019_leetcode.png)

View File

@ -36,7 +36,7 @@ type: docs
笔者是一个刚刚入行一年半的 gopher 新人,还请各位大佬多多指点小弟我。大学参加了 3 年 ACM-ICPC但是由于资质不高没有拿到一块金牌。所以在算法方面我对自己的评价算是新手吧。参加 ACM-ICPC 最大的收获是训练了思维能力,这种能力也会运用到生活中。其次是认识了很多国内很聪明的选手,看到了自己和他们的差距。最后,就是那 200 多页,有些自己都没有完全理解的,打印的密密麻麻的算法模板。知识学会了,终身都是自己的,没有学会,那些知识都是身外之物。 笔者是一个刚刚入行一年半的 gopher 新人,还请各位大佬多多指点小弟我。大学参加了 3 年 ACM-ICPC但是由于资质不高没有拿到一块金牌。所以在算法方面我对自己的评价算是新手吧。参加 ACM-ICPC 最大的收获是训练了思维能力,这种能力也会运用到生活中。其次是认识了很多国内很聪明的选手,看到了自己和他们的差距。最后,就是那 200 多页,有些自己都没有完全理解的,打印的密密麻麻的算法模板。知识学会了,终身都是自己的,没有学会,那些知识都是身外之物。
笔者从 2019 年 3 月 25 号开始刷题,到 2020 年 3 月 25 号,整整一年的时间。原计划是每天一题。实际上每天有时候不止一题,最终完成了 500+ 笔者从 2019 年 3 月 25 号开始刷题,到 2020 年 3 月 25 号,整整一年的时间。原计划是每天一题。实际上每天有时候不止一题,最终完成了 600+
![](https://img.halfrost.com/Blog/ArticleImage/2019_leetcode.png) ![](https://img.halfrost.com/Blog/ArticleImage/2019_leetcode.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

View File

@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="48px" height="48px" viewBox="0 0 48 48" enable-background="new 0 0 48 48" xml:space="preserve"> <image id="image0" width="48" height="48" x="0" y="0" <svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="512px" height="512px" viewBox="0 0 512 512" enable-background="new 0 0 512 512" xml:space="preserve"> <image id="image0" width="512" height="512" x="0" y="0"
href=" href="
YWBgyM0rKQpyd1KIiIxSYL/PwMXAx8DLwMFgmZhcXOAYEOADVMIAo1HBt2sMjCD6si7IrKe7+Wak YWBgyM0rKQpyd1KIiIxSYL/PwMXAx8DLwMFgmZhcXOAYEOADVMIAo1HBt2sMjCD6si7IrKe7+Wak
73U7673PJW+vdOkMTPUogCsltTgZSP8B4tTkgqISBgbGFCBbubykAMTuALJFioCOArLngNjpEPYG 73U7673PJW+vdOkMTPUogCsltTgZSP8B4tTkgqISBgbGFCBbubykAMTuALJFioCOArLngNjpEPYG
EDsJwj4CVhMS5Axk3wCyFZIzEoFmMP4AsnWSkMTTkdhQe0GA2yWzuCAnsVIhwJiAa8kAJakVJSDa EDsJwj4CVhMS5Axk3wCyFZIzEoFmMP4AsnWSkMTTkdhQe0GA2yWzuCAnsVIhwJiAa8kAJakVJSDa
@ -16,59 +16,569 @@ EJakJHRxuRhLCt4YKOpSJsqlEJKqKwTbni8Gcag21VrXUrc9iN4dBtshTw8q3xKxD2Axiu0qgOCM
JMtmEs/tqPLmgRd+k+ip5wfMhS1jmlJd/uLjB3qNecJfxf6/RDo6ysqPRExy+pSKohRRcRf6Uq6d JMtmEs/tqPLmgRd+k+ip5wfMhS1jmlJd/uLjB3qNecJfxf6/RDo6ysqPRExy+pSKohRRcRf6Uq6d
kuT/i3Qh7FgRCAkoUhrv9sY/MTopjeXcCxqj1Pr4NG7IND8ToGbngln4LpAPm4EWXe2Bw8p3cZgp kuT/i3Qh7FgRCAkoUhrv9sY/MTopjeXcCxqj1Pr4NG7IND8ToGbngln4LpAPm4EWXe2Bw8p3cZgp
r4pgk1HNVryF6G3FW9yeEopjMsZrz1palMmmHcpZg49eiOheKkLldU+tT+aE64GWmfxsBVZHB87f r4pgk1HNVryF6G3FW9yeEopjMsZrz1palMmmHcpZg49eiOheKkLldU+tT+aE64GWmfxsBVZHB87f
dtDSiNpc9QrSwxdujO5mPAAwtQAAC0VJREFUaN7tmn2QldV9xz/nPK/3ddm9u7AuC8jLQpBXgSWm dtDSiNpc9QrSwxdujO5mPAAwtQAAfORJREFUeNrt3Xd8HOW1N/DfeWZmd9Us23KRe28YG0zvMdWh
RkBNWzoaielMx6aRhJoK2tDUNDpppv+0k8mM1X80jbHVGWU0bWMrM5k62pkCFiO1WUxJEBK2iyzu lyDTe4eQQNpNcpPrde6bTholhF6TgE0JECCUgG8Sejfg3i1ZktXblpl5nvP+sbuybAy4SFrtzvl+
Asu+3H259z73Pq/n9I9lF7EgsouaTPubuX885zn3nO/3/H7nnO/vN4/QWvPrbPLjBvB/ngBa6/f9 Pr7crCx5drTznPOcpwFCCCGEEEIIIYTIf5TtCxBCiF20vfaLs31RQuQKSQCEELmAuvwBANPla9zl
TVhzLs1XNy0mde55xhTmqq+vX5PLZZ+dMaPue7lctnA1cJof1UKl06lb4jjcGwQhQgjS6fRnHcdZ 73T9u9zljxBCCCFyBAFQ2P2OSnf9HCHyijwQQoi+JtOD7+zlR6PRyDOPPz6prqVln5KSkgkdbW2j
EgRBbTrjfiQhlEqlNgsh9gZBgBACrTW+X5ujlFoz3bE/dAKpVOoWKcUrURQhxPh0WmtM00JKeXK6 N1ZVOgUFBaqwoDCUdF2/ra3NHzp0MA8aNKSqvr5+zYABAz6cO3fu0mg02trlZytIVUAIAJIACCH6
43+oIZROp28WQu8dBy8m2w3DIIriu6MoOv0rSyCTydwKek8YRkh53tFSSuI42RpF0fNXY54PhUAu FoV04L/++uvDSz/+eNaaNWuOiyeTx8Xisalam7JEMgHLskBEYGYYY0BEnX9830coFIJt2W3FJcWr
l92gtdoTBOEkeKUgihQQfgl47mrNdZUJCLLZzE1Kqf1hOA5eCIEfJqDi0aaC8du/kbE6VrSnWHzN Hcd+pbx8+N8POOCA92655ZbWLv+OJAIi0CQBEEL0BZm2iJmZDjvssNk11VXXNzQ0fDWedAuM1gBR
OuzRAn1zR6g389TcwzQ8dRLZHX98BLLZzM2g910A3o8AxcP3Lgl2bGmZm39r9AjLh6pYK+H0AoL2 qjRAZJjZEFHX72Wk/w8BipkVwNDawLYsOKGQGTRo8H8GDCh9YP+Jkx+/c+HClvT3diYcQgSNJABC
UzhOM9QNwb/0whUSuGqnUD5ft0Frtc/3/f8F/m//eBkP3fOJWdnI/afRa2f2Do4Wttd6fJKBIY73 iGzrDML77bffng319d9tbWs9s7W1pRAgKKW6Bmja5r+fhwFwlyqB0tqguLgQJcXFb5QNGvLzjz76
DDPyzhA93TUS/8p12ZQJTJwpUghmFuo3gNofBAGGYVwA/on7l3Hv3QsZPV6iOFYliv0GSD1ZcspP 6O9ExJAkQAghhOh1CgCi0ag9ZcqUawYOHLAxFHLYsi0Oh0M6HA6ZcDjE3fDHRCJh33Fstm2L+/Ur
D1VjbGEDUxeUUyYw4eimhrpboiTe71Wr7wIfjoPfsZL77lrK2AmPKFEIKRBaYOAQi+P31PJHn/GF 8adMmXLvSUcdNaLrdQgRJFIBEEJkiwJgTj3uuFGfrln1802bas5zPReWUpqIKFXG73YMwBhjLAAY
xLQtpiqKp7wHJFAo1G/wo2hv2athm8Y4sTgBJE9+5Tpv+z2z9w6fOu2pxF2lcK4TKsKQCqUlKeGS PGjwByNGjrzxnXfe+T90GYbI9o0RojdIAiCEyAYFwIwZM2ZcvKPjro54x9HJpAvbtk0PBf5tcXoe
m93z5VpR2LWx1j8w2wSIDzmExOTKC5qbGjaFcby/7NWwTAMNJFoTxwl/9cVF396+3Z7D4KEtuWVv geU4Tm1xccFlNTX1z0KSABEgVrYvQAgROAqAmTJlypTNtbX3tMXaj2TDxrIs9FLwBwCi1CxCo7Vf
fKEvPL5MUL7Vtc2eOHEQJCgtiFSeWXHxC/5gx3OBrRAjVx4QH9gDQgiiOMEE0oX6W/vDaI9X8bBN 4vtmzqBBA1a2t3cshXSMREBIAiCE6E0KgNlzzz0nVFZuuMf13CMUKZMOxr0deAmAIiJtjClKJt0j
czKCk/Ez/95P1idPoccgUlhSEMQhKXdoX7ZubEU8POcQobtA2T4oA2FCuqHvi/FAnZaLja1c2SH0 y8qGLuvoaFuRhWsRotfJxBchRG9RAMzUqVMnr1u39j7X9Q4HyGDrLX6zwQKgfe0PcZMddxx88MGH
wQnEcUIuYzO/ueHmtyvBnqBaw7VNtB7XNoZhoOL4D0E/MziWQGiDoUBqLCmJdRYhzpTCwunr/fL6 IDUEIO2jyGtSARBC9AYFwEyePHn8pk2b7va85BF9JPh3Xh8RaddzS5OJxPjj5sx5cenSpW3YsmGQ
QznPXaDNAKUFaAe3N3V3cWvrS57uf8GUGgRolWAZHmEIrdMl4OiEssze1Bec3hd6VdxzG09rjWkY EHlHEgAhRE9TAMyECRMm1tTU3Ot57lf6WPDPIGbAdZPjPM+n+vr6F9G5t5AQ+UcSACFET1IAzN57
JFr/EVH8DICu9oG2QGYgMZCE1LvDYCpK1lgp0N1rmkZX/aQi9BLDDBAKkkAz3NayqrpQv+CIhLzh 7z1248aNd3ueOxupTXf6WvAHUhMD2RhDsVjHxH1m7vVO5aZN6yBVAJGnZIxLCNFTMrP9x61ateo+
YRg+/eVN5PNLpu8B3zTXPPfqkde8IMB17MmEwjAMlNY7Qj98eqKve+1GvAVbeezvOrDeshFBjS7P z3OPRN8N/p3XrJQyrusOrt5cc92rr75qd7lmIfKKVACEED0hU/YfVVtbfZfrukej7wf/DGZm0sYM
Y02tkxmLBlHl3rFMq99e0wv+Kx7OLhIViWkm1JtH/r6xb4hcDd4s5yG1k9C4kzkr1k6PQCblOKE0 WvHpkhfWbdhQC6kCiDwkCYAQortZSAf/urra+5JJ9xjkTvDPIGO4iIkqm5qa/g0J/iIPyRCAEKI7
9nthFdexzmVq58ArfW8QBE9N9N248UZ+59v/yrETZU4Wf0Gdn8ewTY732Rw4s5J5owu5wemm+dOv KQB62rRpw+rr6+5MJnOq559BRGSM0WhubDz2tNNO6595PdsXJkR3kgqAEKK7KABm/PjxM6qrq+93
lxv7iitrxXXfiTcHM3Kvnf4bPjN0NFyU5d83buDF9Go2b7iduTNDkqACuezUCBhS4rjOw17VzzqW 3eRR2DKLPheDJ5GiAez7b22uq1uVo+9BiM8lFQAhRHdQAMy4ceP2qq2tfdDzkodhyxG7uRg4CYDx
ObnyUkqSJLk/DKNJ8Hfe+Xl2736RWNWoDR0m7/hkXHM8A0spYm1wovcGutUn+Zmcz2dG367NTY48 XK+0ua3tsPRrsiRQ5BVJAIQQu0sBMNOmTduzrq7uAc9z9wZIp1/P2YBJRDCs4XnunhdffHH/bF+P
4C4ZYaxjMa8XfosDN22i2NiIOHOSvPUOWjeDUFP3gG1bThInX4uTBNMwJsFLaXzN94PvT/S77bbb EN1NhgCEELvDQrrsX1NTc7/rJmcRkUZ+tC1MROT7fnzdunXPxmKxRuRwQiPEtqQCIITYVQqAHjNm
2L37RQBKo4O4qRRetYphmhfkAmnZQyIFHYdWcdhYSnPdKszvKIq1WQztmMEMv0ShdJyBoIIWAtOU zLTa2pr7ksnEvkRkkB/BHwDIGAPbdoZNnDhxSOa1bF+UEN1FEgAhxK6wAJiJEyfuUV9fd5/neZng
73vJXZaAa5lbwkRhGMZkWyqVerFcrjw+8bx06VJeeuklAHy/QnF4hHKpdNfqFcsbHceJzguP8ybR n1cBkojguu7gyvXrB2f7WoTobpIACCF2lgKgp06dOrm6uvo+z/MO7BL88y4B8H0PDc31efW+hAAk
xELiJ/PRVUmhqcZyKwaVRyOYUwssFbul0RF/d9uSVOVS+MTlCltzmguPnx0u7zTkeC5rWRbAKs+r ARBC7BwLgJk0adK0ysoND3iee0C+Bv8MpRQcpyBfhjWE6CQJgBBiR3X2/Gtqqu91Xe+gfA/+Ga7r
HgbIZDL09/eTyWQm/pL94T/84DXLtK5vKBRQSjEVMwxBaayK7bpndBy0b779s2em5IFyLWgYF1vj ZvsShOh2kgAIIXaEBcDsueekaZs2VT2QTCYDE/yZmePxuJ/t6xCiu0kCIIT4Mp09/3Xrqu9JJOKZ
BAwpkyCMTk68b21t5cSJEwwMDFCr1XAd53cz6ez1Qgo8z5sS+EkvGRAE1RYVhn8CfHNKBMZzqfMh 4J/T6/x3BDPDtm01atSovH6fIpgkARBCfJEuY/6VD7hu8mAilXez/T8PMyMUCtWNHTu2LtvXIkR3
oLQWWuvJeKpWq7z88sv09fXheR7zr53r3Xjjp6iUquhpqMwJS6KIuQsWli71/rIELEOeFecICCFQ kwRACPF5FAA9efLkqdXV1fe6bjIwPf80VkqBGbVVVWskARB5RxIAIcT2WADM6NGjp1dVVT7QJfgH
SknTNFeGYbgfoLe3F8Mw2LlzJwMDA0RetHtsYPhH2lVboiA6r5QFF6rm9z6/t02MJ/8I0dG2qO3x IfB3MsagX79+6045pWJz+iU5FljkjUA9zEKIHWIB0OPHj59cW1vzkOd5eb/Ub3uY2ViWUoPLBv9y
S+G77B4o5HO3Rlrt8YMIKQVKKXK53EHPq64PggCAtrY2Ojs7EUIQDobs2rWLtZvXrJ87a25OwyU2 Q2Xl99MvEyQJEHlCKgBCiK4UAD1x4qzBtbW1twY1+ANgBpTjhFpLSktfS78mwV/kFUkAhBAZCoCZ
gcRy8yS2hY5AxqDUCDqZkIvI7u5u/8evv35g27Zt1NfXT80DfhztTbluyasFeSnH9b7nee2O4zyb OXPmkNraVXd4nntsQIM/ALAiQshxVu6xx+g3s30xQvQEO9sXIIToExQAM3369PJ169benUwmTiQi
JMmX4zimq6uLpqYmOrs6KTQViFVMPlfX0djU9L5ja60Qo29AKoLsIqDlgveDxSLlSoX3W+TL6tea RkCDf/p+oCBS8NTChc/XdXldiLwhFQAhhAJgxowZM2zDhg13JhKJE9M9fyB4wR9I7f2DUCjUOGzE
H6LR33Ls8Rt4PIw0YRh+KZVyn56oOhSLRda2r6Wns4e2thVUa5euGHZ19/PzR3fyi+fnUfznu+Dg iOe73CMh8op8qIUINgXATJs2ZlhTU+O9rps8OcA9/06GGaWl/f59wgknfJJ+SXr/Iu8E9gEXQqSC
73P6Z7Pxf+8OeKFjsl/s+1im8f4AP0hx17IMGmbkfm7blrYdWzuOrW3b0q5r60wm9YQU59ehkCmw /+TJk0fU1FTfkUwmTwQQ1DH/DMNsVCgUbhw1avRZS5cufTlzn7J9YUJ0N5kDIEQwKQBmypQpw2tq
66nnOVW6yHinTqG/9QBfweFzgH5t9tpTuz7/6tAPb3/zzKuLtsezQGdA/9kd6NGjdPSF/PlfPEZx qu5JJt05SPVygxz8GQAxAyNHjnogHfwzrwuRd2QIQIjgUQDMhAkTRlVXV9+VSLhzsKWHG9TgDwDG
MJpecTeKEipedZNlWYfCWM0TgklPgLovk3GNai3YniQJRa/IyMGtzN7wU5KeGzCoI6wcweMMzoO7 8zwqGzDg3/vuu+9v068pSAIg8lSQH3YhgkgBMKNGjRre0tJ8TzKZ/Cq2BLggtwfGMKsB/fvXztxj
Sf/4JOvqYeSO1nU6WXnQEcPEVY3Vs2it+t6cLqNU20fvf8I/bqOleQtzlzuoxn5g9kWxXXYTv1sG +pkvL1r0H0jpX+Q5qQAIERydPf+Wlpa708Ffev6AZmYVslXLxImTbkgHf4IEf5HngvzQCxEkCoDZ
uLZdcF37cKlaa7HO3cwTitQwjO9XKtX7QbP7G3DnBgiO5XDipYwNdTCyAOqfbabuzbPwl63ry7+5 d99pw1atqronkUgcD5nwh/Q9UMZwbNiQkddsqFr7YPp12fVP5L0gP/hCBIUCYCZOnDhy8+bNdyST
7o1aV1lKGSOAqGqRWm4/7DT53xREUKvg6H7imdcQSof0rAMXxXdFObEfhkXXtVe7mdxb1bHyLNc1 iRMgwR8ANADLGG4bMmTI9VVVVQ90uR8S/EXekyEAIfJb5w5/dXWdwT/os/2BVAJkMXNMgr8IqiA3
AEGSJCil70u5qaTm+zuriYIMiPr5EM9GCrDqZuLUQC2rbx+9ce1P6K0gxPiJk8SS9PwsqaFfvmKc AELku64T/u6Udf6dDADFjLb+/ft/ffPmzQ9Cgr8IIKkACJGfMhP+hjQ3N/9Jgn+ndPDnWGlp6Tcl
LE6KN43APHIcMwxg28UxXXFSP1qqDG5uTq/uTqd/2jXgt1imOFcyV0RKfxWRMVsavPtIFCKJQAtE +IsgkwRAiPyjAJhx48YNravbfLfrJk+GlP2BdPAH0D54cNl1dXV193X5mgR/ETiSAAiRXxQAM3Xq
BPSMUN7x6Xa7WXTEox7SjxBSoIVAOHmK//bLP219snO/LF9i4ksQmFJZZalTPbumTq5SiTx1Yagp 1LLGxvrbk8nkyZClfsCWnn+irGzQjVVVNfdjS0IkwV8EkiQAQuSP9FK/fQdVV1ffnUgkT4f0/IEt
oLbj4PHWVzAWfEq7dcRCkOQarzFmLP1GNC/bEQmB9CIwQCcC5eWpW9v50Du7Ox/zyleOZUoEfG0w Pf94aWn/r2/atOnuLl+T4C8CK8iNghD5xAKgZ8w4bMD69R/fkUzGKgCSMf/0Uj8AycLCohubmppu
UgmGIFpjGkbfpDsNCTrmuy+XN4ejK/4jyjWeHMmV3oqa209ZjbMfccfG0NUEDIFOJImfIz/v6EP2 h4z5CwEg2A2DEPlCATB77713/7VrV98VjyfOTB/pCwT7GU8Hf/Iikcj1LS0td3S5JxL8ReAFuXEQ
4mOPmHOnBmZKdSENGIYE1GAYRets2zroeVHLxKX7iRYTOxvgDVbnCa0hHi+7aCRCAFqjwgz5m/77 Ih90HulbW1v720QiNheQ4I8tPf+WSKTg+y0tLX/qck8k+AuBYDcQQuS6zA5/E2prax9y3eTBkIN9
wdTi448yCiRTQXIVaqNRFJ9Jonj1wub0kbp8He2L6nni/sUEoSJWEnjXRaRBGBZxOUemYeTr6euO gHTwV0o1RiIFFzQ1NT3X5Z5I8BciTSYBCpGbLABmxowZ42tra+5OJhMHIxX4AAn+FhGawuHI5eng
PUpt6uCn7IH3mh9Ggw+sN1Zs3bbwkZy7cCchztnBMaQU6NhAODEiySAcQRSPHjDE2Nf1sN8BAiJ9 ryDBX4jPCHJDIUSuyiz1G1tVVfVAMpk4gkgm/KEz+FNbJBK6sLm57W+QCX9CfC472xcghNgpFgA9
sXznoyUAEFZ9cvOOPlh8u/+vK5VrP5dP121EJK3C9m3lpYqx0X9UytM/Svtn34jjOSSpVkCCSKZT ZcqUcRs3brzb81wJ/inpsj+1hUKRy5ubW/4GCf5CfCEZAhAidygAet999x29adOmez3PPUqCP4At
2716BGIFhFCqDA0qWf8DS2e7SKlWCp4dl90izsAx1NlOS0CcWNNa9XfbZW/iX3X7tf/U4P8JfNz2 Pf9YQUHkspaWlgWQ4C/El7KyfQFCiB1iATAzZ84ct2rVqntcNynBP6Wz519cXHhlQ0Pzo5DgL8QO
P7g0rCAvprpeAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIwLTA4LTAxVDAxOjQ5OjU0KzAwOjAwhqBB kQqAEH2fAqD333//UevXr7/bdZNHS/AHsGW2fywSKbyqvr7pr12+JsFfiC8R5MZDiFxgAdBTp04d
XAAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMC0wOC0wMVQwMTo0OTo1NCswMDowMPf9+eAAAAAodEVY W11dfVc8HjtGgj+ALcG/LRIpuKapqenPkJ6/EDslyA2IEH2dAmCmT58+et269fd5npT907r0/Auu
dGljYzpjb3B5cmlnaHQAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMTVR/Xn8AAAAGnRFWHRpY2M6 TAd/QJb6CbFTZAhAiL6pc53/+vUS/LvIBP92Cf5C7B5JAIToeywAeq+99hqxYcO6u2XCX6dM8I93
ZGVzY3JpcHRpb24ARGlzcGxheSBQM495u7wAAAAASUVORK5CYII=" /> KfsDEvyF2CWSAAjRtygA+tBDDy1Zt27tb+PxxJES/AFs1fMPXd7U1PRw+nUJ/kLsIkkAhOg7FABT
UTG7eMmST2+Nx+Nz06f6SfBPLfWLOU7omqam1r90uScS/IXYRUFuVIToSzqP9F2/fs2tHR3x84gI
SAW4ID+nmU1+2gsKCq9oamp6JP26BH8hdpNsBCRE9ikA5sADD+y3YsWKW+PxxPnpnj8gwd8ioo5Q
KHxVS0vLXyE9fyG6jQwBCJFdCoA57LDDBqxYseyOZFKCf5oGYAHUGg5HLmltbf1Ll69J8BeiG0gC
IET2KABm9uzZ/T/99OPbOjpiZ0vwB7BlzL8lEolc2dLSshDS8xei2wW5kREimxRS6/wHbNy44c5Y
LHamBH8AgAGgiAiOE7qkra3tfsgOf0L0CKkACNH7Mjv8Days3HB7PB4/M73UD5DgrwDocDjyvXTw
z5DgL0Q3kwRAiN6lAJiDD54+sLJyw52xWPwsbJnpL8Ef0EVFxd9uaWn5dfp1KfsL0UMkARCi9ygA
Zt999x20bFnl7YlE8mtIBT5Agr8C4BUVFX63sbHxD13uiQR/IXpIkBsdIXpTZ9m/urrqzo6O2New
JbgF+TnMBH+/X7/SG+vq6m7tck8k+AvRg4Lc8AjRWxQAM3Xq1LLq6k1/TCQSc5EKfFL2T92bZEFB
4feam5tvTr8uwV+IXiBDAEL0rM4d/qqrq+5IJhNzIWP+QJeyf2Fh0bcl+AvR+4LcAAnR0zp7/rW1
1X+MxeLS809JB39OFBYWfLepqVXK/kJkgVQAhOgZmQl/pV2Cv/T8u/T8w+Hi70jwFyJ7JAEQovt1
bvKzZs2qP3UJ/oAEf8XMyeLikm+1tjbd1uWeSPAXopdJAiBE91IAzKGHHlpSWbnhj7FY/GxI8Ae6
zPYvKen/vYaGBun5C5FlQW6QhOhuXU/1uz0W6zgXEvwBIgNmxQy3pKTkuw0NDTLhT4g+QCoAQnQP
BcAcd9xxRStWLL9Ngn/qzStFXBIyKqI0l/Xv9wMJ/kL0HZIACLH7Onv+b7/95u0dHR3nI+jBn4GQ
RRyGT/WtxvPLJv6genP9b5lBCyoqLEjwFyLrAtk4CdGNMrP9C1euXHFbMpm8GAEP/oaBAofgedrE
XaO+cdFX//GHX/78TCrfq6Pr32NO3R9K3SVJCIToZYFsoIToJpntfYsrKzfcnEgkLgGCfaQvM1Do
EMI2UNuS5Fuvmk5nHTW+JmLhddfwv7TvvMdFZSuHnnp37VbfF4XCPDAIIEkGhOgVgWykhOgG6VP9
Di5YsmTJ7xOJ+JWQnj+KQoSQYmxudfGbS6fiwqOHcYFlyLJsJA3AhpqsUOgD11evW3bolZr2YYun
XXRbQ9efk0kGiCQREKInBbKhEmI3KQBmypQpJTU1Nb9NJOKXp1/PbPQTOIaB4hBBa4PWuIffXjoV
5x1ZjpBFcH1mBWYQKccmhBwFAiFpqFF7WGGHQy8mdNG/DRV9NGzufXWZn5lKBJiJSBIBIXpAIBsr
IXaDAmBmzZo1fNWqlbe7rnsKpOePfmFC3DWIJQ3u/+YeOOmAQSAwtO4c4wcIzAyAmRUBtq1UyFLQ
DPhMMUXWMo+tN9ka8HyjV/7mlHN/Uw+k5wrMByEKluEBIbpPIBssIXZRZ/BfvXrV3YlE4vguvdNA
PkuGgZIwIZY0SLgaD9wwHScfMAhght81+G8jfdOYmJlByrGBsK0AIriGOpjsdyy74MG4Ne25oaf+
rHO+AEehKAqT7fctRD4IZKMlxC5Il/1nDa+uXv2nRCJ+MhEF+mCfTPB3PYP2hMY939gDpx04GGCG
Np8f/D8jXRkgZiYCLEUqFFLwjUoast8DRZ7wQ2P+PvjUPywHAAYI0SghGpWKgBC7IZANlxA7KTPb
v3zDhg13J5OJE6Xnnxrzd32DjoSHe7+xJ045cPBny/67hsHMliIVDqWGCAyc1UYVLXCtkX8pP+Pm
Tzr/olQEhNhlgWy8hNgJFgA9bdq0YZWVlX9y3eQpCPiRvpmev+8btMY17rpuGk4/eDAI2Lme/5dj
cGryYNghKEXw2VkNp3BhXI1/aNhpv1kCpJKA+YgiGo1KIiDETghkAybEDlIAzJ577jl0/fq1dyeT
7knS80/1/H3foC3h4a6v74nTDhoMi754zH83MUBMYAo7RMoieOysZxQ/0I7Rd46a+7sqIL1qQCYK
CrHDAtmICbEDMkv9hm/aVPXHZDJ5qoz5p3r+Whu0xDTuuHYazjhkMCxCTwb/LQgMJkYmEVAKnnY+
0FbJXR2FEx4Zc9IvmgCAo1FFUg0Q4ksFsiET4kt0GfNfd3cy6cqYf3qTH5Ne53/ntdNx+iFDerrn
v31bEgFVEFLwmWBUwf9pNeg3g8+8/xkAYIYCZDMhIb5IIBszIb6ABUAfeuihJYsXf/SQ9Pw/O+Z/
x7XTcMbBQ2CpLAT/rXXOESgIK3hGxcgqeRBq7K/7f+13awCAOaqIpBogxPYEskET4nMoAObKK690
Hn300T8kEvFrIJv8oChEYG3QEvdwx7XT+0rw74rBzLZFKhyy4Gp7uYuBv9ww8dsP77fffh4zFEjm
Bgixrb7x+AqRfQqAqaioKHjxxRdvSiRi16Yfj0Bv77ul5+/jzuv2wOkHDYGlAF9zXwn+nTi9sVA4
pBSzZYwqejquh/5g+Ll3LgNkboAQ2+pjj7AQWZEJ/qEXX3z59/F4+zVEEvy37O2fCv5nHDwEivpm
8N8aGQKrogILSW0t93hAdPDZjz4CAAsWVFhz5y7U2b5CIfqCPv0YC9EL0qf6VRQsW/by72Kx9qvS
j4VJfy1wMsE/7hkkkhp3X78HTj0wM9u/rwf/TgzAhB2yNJNPdsndXsnsnwz+6o3VctqgECmBbOCE
SFMAzPHHHx9esuTF38ViHVd1KfsH8tlgBgocgqMYiaSPu6/fA6cflHPBH0j9Iq2kC6O1scNov9pu
efGZzX87/3CKwhCBORoN5O9YiIzceZyF6F4KgNl3330LV61a9YdEInZ50Hv+zEDYJpRGgMrGJG6/
Zg/MPaw8vbd/TgX/z7w1MHNhWCmX7Sa2y3488MxHbgNkSEAEW+4+0kLsus6e/+uvv35LIhG/AgGf
7Z8J/iVhYFNTEj89fzIuPXY4wjbB0wyVF3eFtG2xRWTDoPj2JmvKDybM/WULL6iwSJIAEUB58VgL
sRO69vxvSSRilwZ9tn8m+BeFgJrmJH550RRcePQwRGyC6+dL8M8gAxhVHLGQ4IJFcVN87fCzH10q
2wiLIMqrR1uIL6EAmNmzZ0cWL/7w1o6O2GWQnv9WPf9fXDgFFx8zDCGb4OVd8N/ytgHm4oitEhqf
emrE1UPmPvgfZhDA6LLroxB5LZBjnSKQFABz8sknFy5e/OGf0sE/Iz/D3Jfo2vPf1JTETZdMxSWZ
sr9v8jX4AwCBiNoTWoeUmR7iuqdqHzn3QiIwEcnkQBEY8kEXQaAAmKsvuGDIB++9d2dra/tFSPX8
A1v2NwxE0j3/muYkfn1JquzvWIDrG6gcnvG3Qzi1SiCWZK04MTDMNXds/svx1wMARaNGkgARBHn+
lAuR2tv/hqvPHvt/r31835IVK2czM6vUIvBAfv63HfP/3eVTcd6Rw+AQ4HoGKo+7/tu/H2xCtlJQ
Chwa/LsPB1z1wyOPPDIh5wiIfCdZrshnFgB99cVnj/3Xa4sfWLJi5Wxfa62UCnTwjzhbev6/uXQq
zj9yGOyABn8AICLl+TDa14hw042zGv/023fviBYSSSVA5LfgPe0iKCwA+uLTvjr2w2Wr//LpmnUH
G2OMY9vEzIH83G/b8//D5dNw7pHlqeAfhLL/lyJDMKqoIISELrwv2X/S9eVzbuqQMwREvgr6Ey/y
kwVAV5x8xLily9Y/uHzdpsMYrB3LUibAwT/iEIrTE/5+e9k0XHDUMFhgeFqCfwYDrAgoLnAo7ofu
Xd084ur9rrrTkyRA5CMpb4l8YwHQF5582OglS9c8vHx99WEMGDvgwT9sE4qcVPD//eXp4E+cnu0f
yNuyXQQQM3FH3ENIJS+d0H/T/wBMMjFQ5CP5QIt8YgHQZ3919tj3lq1/eMWGzYeAWduWCnTZPzPb
v7o5id9eNhXnZXr+AR3z/3KsDJNJJH0QJX7UsOCkaDQatSUJEPlGnn6RLxQAc/kZs0e+8fHqv65c
X3uYYTZBD/4hi9Avkur5/+bSqbjg6NSEPwn+X44BthVIhRxohP9fWcUz/wMQR6NQ0ShkOEDkPGkB
RD6wAOjLTjhqzJvLVz+wYmP1V8CsLUupIAf/iE0oTu/wd9PFU3DhscMl+O8sZqMsUrZjw+eC/128
dN+fHBmN+jInQOQDKWeJXKcA6PPOmD3yrRUr71+5seYrYDZBD/4hC53B/1cXT8EFxwyHQ0iN+Uvw
33FEymg22vNhq/iPZ05/d57MCRD5Qj7AIpdZAMy5Jxw15oOP1jy4YmPtbGZjrICX/cM2oV+EUnv7
XzQZFx09HCGVXucvE/52HpHSmo12fVhI/Kj+ryf+5NXZMidA5D5pDUSu6hzzf/2jVfevrqw72hgJ
/o4F9C8gVDUm8bPzJ+HSOSMRDsr2vj2N2VgWKSvkwPdD/1t2zrP/AwAchSKZEyBykGSvIhelev5n
HDXmzY/X3LeqcvPRRnr+CNmE0kgq+P+/8ybhkmNHpIK/9Py7R2clwINlJX/c8MiJ84EKi6KQSoDI
SfKhFbkmtc6/4qgRH32y+k8rNtQcw4aNpSiwwd+ky/5lhamyf/Tsibjs2BGIOJTq+cuYf/fJJAGe
D9tK/rjhrx0/AuQAIZGbpGUQuUQBMBdWHDXi3Q9X37lqffUJQV/qZxgodAhhi7G51UX07Am4cs5I
FIYVklL27znp4QDl2MwoiA6Y+8xPUi/LAUIid0jrIHIFAeCzTjhs8uLlG363rqr2BE9rti0LQQ/+
FjEa2z384oKJOP/I4SiOSPDvFZk5AY6t2ahf1L1m/e+kW55PyhJBkSukhRC5QAEwXzvm4Fkfr1x3
7+qqur2VImOp4Pb8mYHCEEGxQWOHh9uumoa5hw2FbRFcnyFV/17CbJQiVVhoI5bk+ysrra/v9d0X
OxYsqLDmzl2os315QnwRK9sXIMSXUABMxbGH7P3Rig13rq7evK9tKW0RqaAe6Zvp+TuK0dDu4eYr
puGsw4fCVoCnIcG/NxERg4znGxSErVmFxWbo8TPGvHjSdc95CxZUWAsXLuFsX6IQn0eaCtGXdQb/
D5evvWdNdd0+FpFRRBTU4M8MFDgEiwwa2z3ccmWq5x+yCJ5mSNU/O9KnCFJBxELC5/ve2hy+5oRv
PJ+USoDoy6QCIPqqLcF/2do71lTX72dbyijp+SOU7vn/7rKpOPuIcjh2KvhLzz97CCAGWGtGgUOz
hkX8wfuq/V+cO3+hL5UA0VdJAiD6IgXAnDXnsL0+XLb2njU1dftbSnr+hQ7BJkZ9u4s/XD4NZ3+l
HGGb4MmYf5+QTgKgfaZISO03ekq8fELZwH9c9P2XJQkQfZI0G6KvsQDoqyuOGvHK28seXb1p86E2
KUMEFdTWs2vPv67NxW8unYrzZpcjZBN8f5fL/tveTmkLugkDTAAVhBU8zbetbm29cb+r3vNkOED0
NbJxhehLFAD9zXNOGfraB6tuW1tdd6hFxESpnlUQZcb8bTKoa3Pxu8um4rwuPf8vCv4McJoBQ4Oh
mVmD2QAgSgX99B9Of63z75n03wvqrd9lmeGAhGvgWHTd+H6lf6ioSAV/ZtksSPQddrYvQIg0C4C+
tuKE8lff++C2lZWbTyWAlSIwB7N3ahgoChEcYtS1efjNpVNxzhGpnv92lvoxmJmR7soTyLGIlLJg
W0wh2wKYQERgZsS1gUmvobSIKGwpK5VNMMAMVxv4GtDaQBtmMFI/mxRSHdxg/k52FAFkGBxPGoqE
1TV/Or3dnV4X/Q5R1JfNgkRfIQ+x6AsUAHP16ccNee3jZXeurKw91deabUsFNvgzA5F02b8+3fM/
57M9fwZgACZLkQrZCrZNYBDACglt2pRCE6zCWvY6VluwtHb6K9+oRnYb1hC7cQDwTfEAp7B0XEh5
hSbZxGzBIVUwnnViKGszqCCkCpgYMAzPM/A0gxnaMBNAst/QF8isDnAcG752/lB27nM3AsSyWZDo
C+TRFdnW2fP/9wef3r6isuY0ow1blgrsDn+Z4O8Qo6E9HfyPKEfIIXi+YZUuy1sWqYKIBYDgGkoY
5lo21jJW9lvE1srWRKQqYhrr9YCZzSNO61cFRE16ePpzyvrpr0WjdtXem4eZljUDHCsyOBz2R4PU
XsZzD1SWGa8UD4wotn3fIJbUYIZJVR1IKgPbwQArgJyQBYPIb/6wdP/vR6NSCRDZJw+ryCYFwFxf
cfzgVz/89J7VlbUn+75hywpu2Z8BOIrQLwxUNyfx+8un4ZwjhsKxwb4PYytY4ZCCbSvEPcRh2W+5
Lt5gp+DdOBd/8PGSgtqTo3fGvvTf2eb+En35WP9Lv6gonTGjaLSdbNuHXffAUIgOZje2d0EY8D2D
uGvADI3U7zWQv7/Ps6USYME3zu/Kznn+21IJENkmD6nIllTP/4QTyv+zYukdKyo3naKD3vMH4Cig
rFBhQ0MCP79gEi47bqSxFZiZreJCGwmPPEP2CkPqCdd3Xqkzwz6aed7tTdv8HEI082xHgXnztl49
mZr9x5/5nm1TgPlRAqKpb9nOefeVj18/0vaq9w057jHsxo+zyEyK2KD2uA9m0iBJBLZGhoiVbSto
E/7N4jsP/P6Ri6QSILJHHk6RDRYA/e1zTh700ruf3Ld846aTjNZsBfhgHwZgEzCwkFDZmMR3ThvH
1580kgf1s5VtKcR9agOFX9Cq6BGvZPS/y+fctLnzexmE+SDMS4XwHenN79I1ZqoG80HbJgRr/nL5
0P6hpmMVJy+BSRxZ4IBicR++kYrANpgI5NgKjPBv+p/93HelEiCyRR5K0dssAPqbpxw9dNHSNXcv
21h1UmrMP9jB31FA/wJCVWOSv3v6OPONk0dZ5QNCaE9a9bAif2NVfP/NZzz8RpTIpL+HEI0S5kW5
pwL+l6BoNErzUv9PZ+D6dEG0eKj9ydEhk7jA+Mmvhm1TlKoIwFBqCYFIVwIcW0Gb0K9fPrfkB3OR
WiIolQDRmwLZ4IqssQDoK885edBb735y/7INVSdqY4xtWcE91Q+ArYD+EcKmpqT5/tfG03fPHENh
22LXFPyZCgffNODkez/q/PvRqMpi0P88xIytKgMVCxZYf6SnD7fR8h2bEycqaMQS2iC1jDDwiUDn
nABbQZvIrwae+9x/Aanfr1QCRG8JZKMrssICoC8/5eihby9bdd+y9dXHGwn+cBRQYBPXtyXxswsn
0eXHj0JRKPxGSzL8qzvP2fvpaLpHyFEozENfC/yffU8MwvwoZYLYp58uCA1f8cRZnGj6QaGjpyVc
H56GhmxDDoCMIla2o6BN+KaXzyn+vlQCRG8KZMMrep0FQF934ell/3rzgwdXbNh0gtYS/G0FjlhA
Y7tLPzpzHK46cczKwWUlt79TOf3+w6/9RROQuz3C1KTCKGUC2fIHrh4xOFJzneL268IW92uP+0aW
DW6pBIQcC74O/3rguc99D8jd37vILYF++ESvSO3tf/pxQ974ZMWDSzdsmhP0nj8AWAQGA7Gkpm+e
OGrDtcePun/y9LL76Mi/rQMAZqS23OvjPf4vk5mgmBka2Pz4RUeEdd1NIZXcvyPug1kZUNCHBFKV
ACdkQ5vQb//wp9h/RRct8iUJED0tsA2w6BWpMf+TTx705vJPH1ixoeoEX+vAB39FYMPgZNKoikMH
v/bD08fPn/Wd114CAF5QYaFiocn1wL8tjkYVEAVFYVqf+fYgN7b0fx1OXg02cH0O/JBAphIQDtnw
ffu3Vz5Z8r2FCxdqSQJETwpsIyx6VgVgLQT09RXHD/7P4qUPLV2/aY7vG2PbEvw9zexrVqfuU/7i
DSdNvO7I6KJVQDDKvsxQRKlqQNNjX7tI6bafWeQPjyW0rBJIVwLCIRueDt28aXnRd6dHF7pB+FyI
7Aj4Ayd6iLUwPdv/3x8tu2/phmoJ/khtvuMbAAQ1Z69B/zjj8FGXpoO/xQAFoZEngklVA4ABZz7+
QIc96hyfCleWFNiKA3/6ICvN4ITrI+R43xg+tf1nQGqZZTQqbbXofoFtjEWP2bLU7/2PH1qxvvqr
rq+NE/Dgj/RG+wnP4JA9yh++/OQZ37r058/XZe5Xti+u129Gl7kBm564fFqBu+G2Qlsf2Rb3Tfqo
o+B+VpiNZZGybIsTOvTdoec+/5vMPcu3oSGRXZJVim5T0WW2/1sffHrfsnXVX/W0BH8ABgBpZgzu
X/j74848+LJLf/58XUVAgz+Q2q2QojC8ANbwM+5e2hwvPTfhh58vLnBSB0AHuRJApLRmo31NEcf/
WcMjJ96QuWdBPSND9Az5MInu0hn8X3vro4eWb6g63vUk+CMV/BUzw1bWz2OJxA8BIAqoKJD3Jf8d
wQsqLJq7UFc+8YOyYn/5HQWq7WttcTcT64L72WE2jkOKLNvzOfzDsrOevSn1slQCRPeQCoDoDp1l
/9feXnzv8vVVx3sS/IF08AcYFtGvM8EfEvy3QnMXal5QYY084+cNVTjsynZT/GRhxMmcVxTcQEek
XI+N8X3HVsmfNSw44Vupl8EyJ0B0hyA3zqJ7KADmwtNPL/to6UcPrFpfdWJCgj+QClwEMJSyfhmP
J77f9X5l++L6oswKgbce+FnZxMg7f4qotjNjCS9zkmFgP0vMbEKOUsq2PNdzfjTo3Od/lb5fUgkQ
u0WySLE7LADmkorjB3/46Qf3rFy36cSkTPgD0mP+AKCUukmC/44hglmwoMI68KIfNlT5B1yZ5IIX
+xU6RIBBgAMdESnXM8Z3fcdxvJ82LDzx2+n7JZUAsVuC3EiL3aMAmOtOP7rsX5+svHd1Ze0prq/Z
DvCpfmnpsj8A8G+SSe876dcl+O+gzJyAzY99d1LIrHggotoPbo/7hlP93cB+tpjZOLZSKmR5rgn9
9+C5z/069bpUAsSuCezDJHaLAmAuOP24IR9+uuJPqzdWn+76ssMftg7+v08mvW93eU2C/07gBbBo
LnTdE9HJjv/+AyF0HBRL+IaVJAGOTUo5tu8b5/tlZ2WWCDIRkSQBYqdI+UjsrFTP/8LTyxZ/uuL2
1RurT0+mev5BD/6MLcH/Zgn+u4fmQnMUavAZ0RWefdBFLhW/UVxoK0othAtsoCMi5fts2NO2pbxf
NCw8JT0cQLJEUOw0+cCInaEAmKsvOH3I629/eNvK9ZvOdLVmR8r+XXv+tyaT3rcAeJDgv9sylYDK
J342udh/6/4QtR3cEdcGUgkwjk3KCoVcX/f/1sCzFtwGpE5hpCCvnBA7RSoAYkd19vzfePvDW1dv
qD7T9SX4Y+ue/+0S/LsXzYVmhhp5xg9XdIT3u8Tl4jdLCm0FI5UAz2djPDek7LZfbX7y/LkAgGhw
kyKx8yQBEDvCAmDOOeXoof9688M/rtxQXZHwfHbswAf/LrP96fZRo8bcCAn+3Y4otWPgiFN/vLwj
vP/FCVP0ZlGBJUkAkXI9aEcnC0Ne3S+rn75iOkVhWFYGiB0U5MZb7JjOnv+/3/jg1tVVNWcnXZ9t
Cf6dZX8iuqu8fNg31q1bl4AE/x6T2Sdg02PRqYXm3QcKrPgBbTFZHQCG7ldsW3EdeXLJxknnHfKt
38VlZYDYEZIpii+iAJhLTzl2+L/e/OCP6eAPCf5bBf8/DRxYdoME/56XqQQMPzO6LGbvcXGCC18r
DNsqdXRAgIMdQbXFPLaQOH3S6HXnAwDmBzghEjtMPiTi8ygA5pyTZ099/+NVt6/btHm2AbOVOqol
yJ+bzPa+hojmJRLuzyCz/XsVR6EoCrN2QbS8PxbfXqBaT2uPe8E+RZDJRMJQPjkbEmrMCcPOvOvT
zH3K9qWJvksqAGJ7FABTcfzhe7z3ycq7V0vwz8gEf01EP0ok3J9Cgn+vy5wiOG5utCZecMgVCe73
ZFHEUYE+O4BYJVzWxQ6PDnH9ZZ33KagJkdghkgCIbSkA5gcXnl728dI1v19TWXcogY1FEvyR7vlb
Fv0kkXB/gS0rACT49zKaC71gAazhJ3+nPl6031UuSv7er8BJHZgb1CSAiWIJH0rHzty44LKJAGRV
gPhCkgCIrjqD/7NvfHDL2pq6Y0HMliIKeE+ia9n/x7GY+/8gwT/r5qaTgGEn/LAubh1yWQKlz/Qr
chSCulkQsXJ9Y8K2HlWi6o7M9uWIvi/IjbrYmgJgbqyoGPjKR+//fmVl1QWer6Xs36XEb1n4SSzm
/i+k7N+nZFYH1Lzw6yGRljceLLRa57R0eIHcLIiZTb8iR7UnracHnfvCqdm+HtG3SQVAAJngf1nF
wH9+9M6tKyqrLnBdHxL8OwM9W5aaJ8G/b0qdIgirfM53NycH7ntRu+73j9IiRxEH7xRBIgXX01Aw
+7c+ceFkAJATA8XnkQ+GUADM9685d8Arr7/3h1WVted4ns+2bQV9b/EuPX/1k1gs8XNI8O+zMsMB
Q4/579qWopmXdJjif5YW2RYxBywJYEp6BpbiYa4bOwgA5u1REeTnWHwBSQCCTQEwN1x8cf9/vPrm
bSvXbTrfdT3Ikb5b9fyjsVjifwFoSPDv0+amtw0ed2K0pqVk/ws6uP9LpUWOBWM4QBkAAaQLHAbD
nw4AWLIwQG9f7AxJAILLAmC+f+65Axa98Z9bVqzfdE6ys+cvwR8ALEv9b+zEk38GCf45IzUcUGGN
/ep/VyfKjz6/gwe+3L84pAisg1QJMAzYFk/ld991KJreNFmIbUgCEEDR1O9dR68/r98L779124qN
lecnPR+yt/+Wg32I1D3Tpk3/f1i4UIJ/jpk7d6Fmhio/9JrN7qivXNBBZS8PLA5ZCNBwABOBdGvR
e38/xcn2tYi+SxKAgKkArChgbrjh4v5Pv/rWH5evqzonmTrYJ+g9f0Z6VYxt2w8MHz782++9954c
7JOjMhMDhxxwXU1z2UEXtpoBr/YvcgKRBDAzsTEwcIoLRh4fAYD5sjWw2A5JAAIkCqiFgH7w198p
emfR27ctW1N5XsL35UjfrYK/c9+wYcO/sWbNmhZI8M9pc+dCcxRq7BE3VrcN3ff8OAa8kqkE5HUG
QESu64NU4YSigcOGAsC8edFsX5XogyQBCIiKilTP/55ffq/kocdfvm3xirXnxl2Pw1L279rzv2/k
yJHfXLVqVSsk+OcFiqbmBIw+7L82NRcfcUGr7r+of5Fj5fOcAAKgDYNBJY5FEQDAwk+D/IyLzyEJ
QABEo1ALF0KvffW+yKNPv3TrG5+svKgt4XLEtmEk+GeC/70TJpRcv3z58jZI8M8rc+cu1ByNqtHH
Xb/JLz/ivA4MWFRW7ORxJYDYthQAUxdPWm0AgIrp+flWxW6RBCDPVVRUWNEozAu//nXR1T+6+Y7X
P1h2YXsszoVhCf5IB3/Lsu8pLe1//eLFtR2Q4J+XKBo1vKDCGnzY9Zu8Ifud16L7L+pfmJ+VAGYD
x7Fhcce6Ae7KzQAwf34025cl+iBJAPJYNBpVCxcu1Cufuzn8m7898sfXP1x+YXsiyYVhB9oEPvgD
ABzHvnvIkCFf37RpUwwS/PMazV2oOQo1+LD/2uSXf+W8Dh7w6sA8rAQQERMRGOxWVn+sAWDevPxK
ckT3kAQgT6V6/lHzzB3Rwut/dv9dr32w5MK2eEKC/5aePzmOfdegQUOuX7duXQIS/AMhdZRwphJw
zHltPOCfpYVO3u0YSGBo9Kvf6zsfxbJ9LaLvkgQgD6XG/FM9/1sf+vvtr3247IIO6fkDXXr+lmXf
XV4+XIJ/AHVWAo64qrp50DEXdGDAK/2LHZXeLifnkwBC6kwA33hLQMS8ABblwfsS3U8SgDyTGfN/
fcFvC677+UN3v/bhkgvbOhJcGA5J8AeImcmy1B3jxo27btWqVUlI8A+kVCUA1tgjrqr2Bs4+rw0D
XuxXlBdJABPBivvsKkt9AAALUZHtaxJ9VJADQt6JAioKmJXP3Ry+/ucP3fH6h59e1NqeMIURhyT4
pzZIsW3r7nHjJlz36aefupDgH3iZo4TXvnpfeb/65x4sUY3HtnT4uXuUMJOJhKB82BviJaOPGH7i
PeuZQVIBENsjFYA8EU0H/9cX/Lbg+p8/ePd/PlxyUWt7ggsjIQn+6Z5/KGT9SYK/6IooVQkYd+Ql
NTWFsy+M88Dn+hXaCswM5F7QZBg4toKh0OvDT7xnffo95tz7EL1DEoD8oKLpYPbDm+771duLl5/f
3h4zhREH2pigB38wM0Ih5+7jjz/5mxL8xbYofYrg9BOvq2ksmH1ZnAb+o6TAUUDuJQFEIM8omHDJ
MwDAUWnjxeeTD0fuI6SD2fgRQ3/wnw+Wfb2pPYaCiIz5p+8NhULOHccff+J1CxculOAvtquzEnDi
dTWNpcddnFQDny4ucBQhp+YE6KKIRRr2u/Vm3AsAMD/bVyT6tCAHiHxASPdQxg8b/M2qxpbfMwNK
kWHmICd3mQabbNu+d+zYcddIz1/siMycgDVP/X5of/8/90RM44kdcd335wQQGMwojDgU14XXDzr7
6Vs5CkVR+byLzxfkIJHrOoP/zAmDv9HQ2vY7w4AiSPBPIccJ3SXBX+yMTCVg/Kk31HaEDrnKRb+3
SwosBZOaFNBnMUxRgUUuh96Lqwl/AQDI5j/iSwQ5UOSyzp7IV/Yed2VlXdtvOzxDimA42L/Trj3/
+8vLy6+X4C92VmZOwKiTv1WVKDj0sgSVvl8UsRT13R0DGWDL1Qqai38/au7vGjmarlkI8QWCHCxy
GQHgrx4685TV1c2/bezwLZtgEOzfZ9fgf9/gwUOukXX+YlcRwTBDlZ/03U9aI4dc5FK/d4sLLKXQ
J5MAU1pog1Xxw6/Qo38FIL1/sUOCHDBylQJgjtpv3AFvf7Lmd1UNbUURW2np+QMAyLathwYMGHhd
eoc/CxL8xS7KDAeMPum7n7SED7o4gdL3CsKpSkBfmRjIDF1cYFkdOrS4Qw36wdy5pKX3L3ZUkING
LlIAzMVfmz21sq79rpaOxPiwpQynAl1QdQZ/pdRDpaUDrq6srIyn75XO9sWJ3JYZDhhzyvc/bSs4
5GKX+r1bUmgrYsr6EkE2bAojynINVftU9M2RX7u7Uib+iZ0hCUDuUADMf115TOl/3l76q7XVrTMt
JT1/oHOHvz8feOBB16ZP9ZOev+g2XSsBDdahl8S5+PVIiFR6Jk5WkgBm6IKIpTRoc9JVlw2ueGyR
BH+xs/rushbRVeeM//33HHXTxytrvq0N2FIEDu7vsEvZ33l47733vva1115rg4z5ix6SCbCrH/zm
6IHhT34fVnx6LGHAIAP02sobZmYuiljKM6j14Vw16OwXnpLtfsWuCGrwyDUKgDls1sRLP15RdVuH
pyPpzUqD+vvrDP5E6s977bXXtW+99VYrUj1/KfuLHsMLYNFc6OV3zB40uJ9zs6PMOb6v4RtopJ7T
nnsmmQ0poqKIRUmE1mkTuaZs7pP/YAaBAMqxXQtF9gW5fJwrFABzwqFT9lu5oX5eu+tHLEqfWRZM
Xcf8/1peXv71dPCXMX/R42gu9IIFFdaUqxbVN7WOu8bTkZ+SsjuKIsoigMBs0I2BOPWDUj8zErZU
JGRR0oReSHijzpbgL3ZXUINIrlAAzOWnHDj0lXeX/3l9XfvRtlJBXu7Xtef/aCgUura1tbUR0vMX
vYyjUUXRqAGApkfPP02pum/B+IdbMIi7DGY2BAUQU3oAb2faWs6cYAUChWxFjq3gabXOo/A9HUWj
bhtz0u1NMuYvdpckAH1X57j/XlNH3bRsTe23mZDZ3D+Iv7fM3v4A6HHHca5pb2+vg4z5iyzpOu6+
9tlrywfEay+GbrvQgp4WsgBXMzzfwNcAgQ2IGCACtj6jIxXsiUHMACsCkW0RQg6BQEgatRl25BlP
l9w+eO5f3gO2zEfI9j0QuS2IgSRXEAA+aObEy1es3XRLa9KLWERdgmCgZKoe7DihWwYOHBjdsGFD
EyT4iyxjgBAFZYJx9ZMXjw37LYcq8o8wfvIIMt4E21GOnf77rjbQZtuHmOFYBEspGAJcn8GsWiw7
/LZm62lPOf9aUvb1JUceeaSfGvpjUKotEGK3BDGY5AIFwBx76J77fbR07cKGtuTYAJf+O9+3Utbv
TjrppO/LqX6ir9l2Fv6rr75qT6m+dWJBSE8lThygPbOfBX+IcsKDmEw/GK8zlANhH9rfrD2/mcKR
FZYTejuZsD8y4bHLy8+4aXPnvyG9ftHNJAHoewgAX1tRUfzsvxfdv6mx+WsWUVD3+O8a/G8qKyv7
ny6b/EhDKPocjkYVEMW2gbrmweOK/OLySEQNmGjFNw5lvdkANqAUceFk17f7r2xd82r9B43HJ+ZG
o27nz2MQECUgyrLMT3Q3SQD6HgXA7DVt9AWr12++P+lrpYJZ+u98z0pZvy8rK/uhBH+RK1JDA1Ha
XjLwpd/LIMwHYR4k6IseFbSg0tcpAObKc/Yd9MKraxZWNrTPdhTpAG712xn8bdv5zYABM39cWfmG
BH+RkxipkwPmzwfN24FDeiToi94iCUDfQgB45sQRN6zZ1PA719dMRJnXg6LLOn/r5rKysu9Lz18I
IbpfEMeV+yoCwMcdOHXfuua2b8RdjQCW/rsG/8dGjx79Iwn+QgjRMyQB6BsIAEej0VBlbfN1jW2J
cZYK3MS/rsH/qeLi4uuXL18ue/sLIUQPCdrYcl+lALBurTxmXXVjNO76YUsFqvTfNfg/oVTJNc3N
dbWQ4C+EED0mSD3MvooAmOi1FcVVNU1XtcaSJVZq4l/ggr9l2U+VlJRc29GxWYK/EEL0MKkAZB8B
gCE6Z11V3Xdd3ygrNfMvCAlA1+D/RElJydWbN2/eDAn+QgjR46QCkF0EgC8/5eih6zdWX9EW9+z0
2H9Qgj8jFfz/1q9fv6tra2sl+AshRC+RCkB2pTa6cXB21ebmr2ttoIKx7C8T/JVl2U/279//yurq
6npI8BdCiF4jFYDsIQB8wenHDalrbLk4lvCggtH73yr4Dxgw4IpNmzbVI5WMSvAXQoheIhWA7CEA
CAPnVtU1XetpJiv/e/9dgr/1xMCBZVdUVVU1Qnr+QgjR66QCkB0EgC+pOH7w5tbWi9qTHgVg7L8z
+CtFTzpO6PLKyspGSM9fCCGyQioA2ZE6217pk6rrm7+V9AzyfN3/VsE/HC64tKWlpRnS8xdCiKyR
CkDvIwDmyitPLmxuba9oi7mwFenUsZ95qWvwfzwSKbykubm5GdLzF0KIrJIEoPcRACz7YNV+TW2J
OQwG5e/vgQEwMyvHsR8bPXrsJU1NTS1IvV+d7YsTQoggy9fA01cR0r3eyk1157TFkiWWUvk69t8Z
/COR8IL99jvgkvTe/tLzF0KIPkASgN5FAHD0gbP2SHr6eE+bfP0FMBExM6tQyHl89uyjLl+0aFE7
pOcvhBB9Rp7Gn76tqaX5qNZYfIxFZJB/vwMGwJ7nKdu2H9trr1mXPP3009LzF0KIPibfgk9fRgDM
paecUtLQ2vLVeFJDKercDD9fMMNorVV5efkrJ5540uWvvfZaJvhLz18IIfoQSQB6DwHAuuqVs+Jx
bzanpv3n1dg/ERnf96zx48d9/LWvnXn1woULWyDBXwgh+iRJAHoPA0B1Q9MJHQmvSCnifOr9E5H2
fF+V9itZPWvWjAtuvvnmlZDgL4QQfZYkAL2DAPBpp83u39Qen53wNNLj//lSATDaGKu0X2ntiPLh
Fz766JMfQYK/EEL0aZIA9A4CgKo1G/b1XbMniIH8uffMzMq2LEwYO/Z/Plm27HVI8BdCiD4vX4JQ
X8cAkIy5h7XFk0UWKZ0va/+ZUyMZw8tH3PXO++/fmX5ZZvsLIUQfJwlAzyMAXFExZ2B7MnmMrw2I
8iP4A9BaazVw4IC3pkyb8j/p1xSQd4sbhBAi70gC0PMIANqqNk1pa4/vk34h5xMAIjJaa2vgwP5t
48aN+e/nnnuuBnK4jxBC5AxJAHrJhtqm/ROuX5gna//ZGCbLUhg8eMhtb7zxzj/RZZtjIYQQfZ+d
7QvIc51BMZH0D0+4GkqRRu4fw2zYGKv/wP4flpcPuHXJks73mge5Td/HzAQA8+fPz/lKkhAZ8+bN
YwAgImlHRF4gADhj9oEjRw0dsERZNkciIT8cDnGu/omEQ8ZxbO7Xr5hn7jnzsvT7lEpSD2Jmikaj
iplVJvgLka+YQcys0p95+bz3ILm5PcsCoPfbY8zx6zbVP9XUnnQcW6U3AcxZRmutRowY/o+zzjpn
7q9+9as2SO+/R0SjUTVv3jzetkf03HPPhS3LKvW89mLP84g5ZAGwHMdhJJPZvmwhvlw4jBCANkD7
HR2mNBzWxYMGtbS1tcVOOOGErT7En/cciN2Xy4EoFxAA3nvq6B8sW1v7M8NGE1Eul//ZGEPFxSUt
Y8aMqfjwww9fgkz863bpXg9RarMorFy5MrxixYoxlsWTLLJmgGgP9s1k3+hhDAaBFORZFrmIYFgb
kCJtO/Yay7I3KLKWaS/xETmRlUcdddTazHPAzArpk0azfdn5QuYA9BwCwBdfPDvy3n9WHuRqjZCd
8/v/GqXI6t+/9NHTTjvtnx9++CEgPf9uFY1GVbrB4xdeeGGIReb0tatWnRCy1F6GeQQpsokU2CbY
RmK+yAPpLpEiNZaY4GsPzOSR9itffvH5V1955ZUFRPR/RJQAUs9INBqVTkc3kBak5ygA5sKTDh7x
6ttL/29TY/sEx1KGc3e8nI0xVFgYaRo9etRpH3+89F+Q3n+3yYx1EhG//vqCglhs4BlGe9ew4UNs
2yKtDTzPA6cAkniJ/EREBKUU2bYNSylo5halrJdB5v6jjz7uWSLidBLAkOdgt0gFoIc1NLSNiSX9
EelcK3cTLoZRSlklhUX/mj37mLc+/nhp6lWx27r0+vHSS8/NirXT94zxTlNKRZJ+Ep7nGWYGpQCp
z1HufpaE+AJExMYYTiaTTERkWVapHVZf05qPfvGFF/768t//ftMxJ520BgAxM8mQwK7L1d5ozthY
1zzN9XVEqZyOlmzYWOFwKDli9KiHb7nlliRk4l+3YI5mypnqhReevxJG/U0p+2zf9yPxeNyku/uK
KDXOL7OiRb7rMgdGASCtNXd0xIzv+/1t27qGHfvJF59//hSk5wNEo1GJY7tIblwPa4vFZ2qjQcjp
0/8YABwn/P7QocP/ne2LyRfMrIii5sEHHyx6+cV//BrG3MbMozs6OowxhjMNYLavU4gsIyJSWmuO
x2KGiGYS4eGX/vGPrwNANBo1kgTsGmlcegYhfUre3lPHPPfR8so5kYitmXNzAyBmNkopVV4+dP66
dRuikN7/bksFfzI33/xwvz2mDvqDUtbFiUQCWmuTDvxCiO3TIcexmMgn8E9ef/Ptn0ajUSPDATtP
GpoedN5Jh5c2NrcNtx0LOTz7n5lZRSKR1qKikjfSr0niuBsyY/4P/vrXRVOnDP6tUtbF8XicJfgL
sUOspOsao7VNpH5y4P77/xeQmjsgQ2Q7RxqbHhBNB8hkwhulSA32tYZKz97KQQYACgoKPzzooIPe
Sb+Wu+lMlqV39TNX3nGHM3KfvX/tWOqyWCyG9CQ/eR6F2AFEpHzfN9r3oRT973PPPXd9tq8pF0mD
0wM+rUglAB8sXzMynkwOsZSFHM1MmZlVKBRCUVHhf+65557GbF9Qvjhj1Kir2PA1sXgc6Yl+ufj5
ECJriEh5vm/AbNlK/eKl51+ak64CSFzbQXKjesDChan/Tp0wpmxzS1w5Vs7u/8PMTJay2oqLSxal
X1OQCsAuSY/78wsvvHCEZan5vu/DGGMod6tDQmQVESnX87RlqUIo8+tnn312DBHJpMAdJDepZ6Q2
x/HjexSEHGhmQznawyMiEFFVKBRalX5Jgv8uSE9QMs8880whgX9k29ZA13W1lP2F2D1EZMViMeOE
7Bkh2/4vILUyADna5vYmaXy6X+eH7rnXPg0RMYgod6MmAUXFhR9PmTJlc7YvJR+ECwsvtC3r2FhH
jCX4C9E9iIhiHTGwMZc+//zzRwPI1WHXXiUNUM9gZqap40YMSngaKkc/hqnyv0IoFHr3oYce6oAs
/9slmeVJ//rHP4Yp7V9rjIGRcX8huhNprXUoHApbwHULFiywiMhIEvDFJAHofgQA5500s3/ENjON
2fJajmGkdp5rZ6ZPu743sXPmz5+fWhVCdBqAGYl4HErlalooRN9ERCoWiwHEJ5SUlBwDAEg/e2L7
5CyAHvLMsx9bbtgpCDsql/cAQGFBUXs4HG7J9nXkqszY/7vvvlvY3FB/jlIWQKSZOSc3hRKiDyNj
jHacgjB5/rkAXsC8eYxoNNvX1WdJBaCHtI0A53L9iYhYa42CwsKaWbNmVWf7enIYAUB9ff0hDOyf
SCQAee6E6BHMTJ7nAQpfefnll8fLWQFfTG5MD/n+3EtLB5b2K3F9DaLcK50zMzu2jebmptoNGzZs
yryc7evKQQwAIds+3HGciNZaQ4ZShOgRSilyXZcBGmOMfygAzJs3L9uX1WdJAtBT6qvHFofsYUYz
cjD+g5mJAYwYPqLxxhtv1Nm+nlyUmfz31FNPlRhjDuPUhJDc+zAIkSOYmZjZhGwbjmUdAADpo7bl
udsOSQB6yEdLPw7HEjGlbAuce5MAOpeotba0LJs7d66b7QvKRZnJf4WWNdLz3L2TrgvZ9EeIHkee
78P1vP3ffffdQgC52Ab3CkkAeshrH9dxc4cH28rhPQAA1GzenMz2NeQ6ikQGEVG/VPVfCNGTiAi+
74O1GRuPx0cCW5JxsTVJAHpIB0CGOafrTumsWT4ju0kBs2zbto0xkAKAED2OtNYgpcoSifbhgMwD
+DzSuPcQGzqXO/4whhEJhzFl4kST7WvJdfFkvNyyLTmuVIhelDph05Gl7l9AEoAeY+Xsvc2U0AoK
C3nS1Klely/ldFKTNcZomNStIyK5h0L0ICKCMQZKKTsctvfI9vX0ZTkbpPq6sJXT1X8wM5RSXFBQ
IAPXu03ZSJf+pQIgRM9KP2M6FAoBhg4FgIULF8pztx2SAPSQpPZzunRuWQqe56qGhlon29eS6yzL
6kyipAIgRM9KP2NK+xpEtGq3f2Aek/GRHpO7DT0zw7IsxGJxfPrp0q6fETkMaBcY4wMIAZAKgBA9
LV29JM/3NLvqDQCoqKiQdms7pALQQ3zfyumGPjMPoLa2LtuXkvNCkUgykzZJBUCIXsN+ItGR7Yvo
yyQB6CHDSsFOju8BQERQ0uPfbeFw6EPXcw2lTlfM9uUIkfeUUmCgwwqHmwFg/vz52b6kPkkSgB5y
6IwxNKA4Atc3yNGl3wwwho8c2T/bF5LrOjoSG4wxCVLyuAnR05iZbdsGARtt214LAPPmzZPMezuk
ReohE6dMb3NCYRfa5OJZAMTMBiAQ0ZSbb745nO0LykWZRke36lpLqdWhUAgsJQAhepxt27Ade3ld
XV1btq+lL5MEoIc0eWZ9S0dyk+0omBxs84kIzIymxsaSl19+OZTt68llJ849sdYOhd90HAeQIRUh
ehQRsVIEG+qtuXPn6mg0qmTuzfZJAtBD/njfU7HGto64ndoPKOc+fERE2hj0K+03gpM8OvNytq8r
lxARc+oscvZ8/zXf90GKFHLw8yBEjmDLsizX9dp9rd8EZBvgLyIJQA+ZPLyEBhZYlsnR3QCYmWzL
QktLS9mb779Zlu3ryVWZqUe2bS8C86pwKEwAcvRTIUSfZ8KhEBTRe2MmTHg7/Zok3J9DEoDuxwAw
58g93DHDBjW6vs7VSYBgZhhjSgvD4cHZvpZcFY1GDTPT0UcfvV5r80/HtmUvACF6QGYDIGZAe+bp
SZMmJZlZyv9fQBKAHnLLn99qrW/xPrYtBXBOZqBEBMPMYW3MnunXcvF9ZF3mKFI7bD3k+X674zgy
DCBENzPGcCQSIW3MSp94Qfplec6+gCQAPYMAoDDitodsKycnAWbehjEGsUTikDlz5gxE6mGS3utO
ikajDABHHXXca9rwnZFIBJBhACG6E1P6rG1FdNMJJ5xQycwkvf8vJglA9+v8wE2eOKnOT50Cl6uj
AACARCK+Z2Nj47D0/8zlt5ItHE1NBkQ8kbjF9/WKSCRiAZCDloToBsxsioqKiA3/s7Ck5KFsX0+u
kASgZygAWF3ZtBLGgIgU52YpitL/p6ytrW2v9Gu5+D6yLhqNmmg0qk4//fR1TPQLZjZEZEHupxC7
hZmN4ziW7+tm7fs/PeSQQ+Iy9r9jJAHoARUVqf/2L9At5WXFyaSXsxMBCYDRRofb29u/kn5NhgF2
UWZjoDVr1jysQPeUlJTAGCONlBC7jolIRSIRGIOfffWkk15Nl/5liG0HSALQAxYuTPXqivqVrEr6
epOlCMjRnh4RQWuDZDx+yFFHHTUh83K2rysXERFHo1F11VVXeZoSUe37b5SWlipmlqEAIXYeMzMX
FxeDDd+jWd+c7QvKNZIA9AwGgKMPGls/oKigUTNydSUAkNoTCLFEfI/Kysr9s30xuS4zFHDccadu
iiXdqxJJd3FJST9LkgAhdgozMw/o318x8zNNrVX/dcIJJyRl17+dIz25nkMAeMrY8gUrK+srQpbS
DFjZvqhdZJhZlZUNuvMPf/jDtXPnztWZ95ftC8tVHGVFUTJPPPHEXkUFkYfC4fCM1tY2oxQR5LkU
4nOlzimBKi4uBhM/61nmmjlfmbMxPe4vpf+dIBWAnpOq+7NeWRiyoJlz+l4zMxKJxFF//OMfx2X7
WvIBRclEo1F1xhlnfGTgnW+0frN/aalC6nMj1QAhtkFEzMzasm3Vv39/GMbD9QnvkjlfmbMx3fOX
4L+Tcjoo5YLikpL3bMsCc073mAkAXDc5sa6u7sxsX0y+yAwHHH/8qYtZWWf62rsnEokgs0Qw3dMR
IvCY2RhjuLi42HJsO+El3Z+0d3RcO/eEE+qYWUWjUXlWdoEkAD1syvgRq2zLauJ0BpCjSCmlk8kk
mpoa555xxhkjIasBukUmCTj66KOrEq5/HYGvIaJVJSUlluM4ipkziUCuJo9C7CpmZsPMJhKJqJKS
EmXA78D45x113HHzTj311Dbp+e8eacB7jgJgTj/6gLIlqza+vKKybu+wowxzziZdzMywlKJh5cMu
XbNu3X2Z95jtC8sH0Wi0sxfzj1dfnRg2/nXG8AW2bZclk0m4rov0REFK73gmz67IK+kSP4wxnDrS
V1mRSASWZUH7/jpF9j2u8e+cM2fOZiB1YJlM+Ns90oj0HALAHI2qPR+6657lGzdfbBFp5O5EQCC1
3bYaXDbwlQMOOvhrf/vb35ohkwG7DTPT/PnzKZMILFq06GDfTVwJ0FEARjuOA8/z4LoutNYAmOUR
FvmCiMiyLIRCIdi2jWTShbJosSLrMcs4j3zluK+sBDqT5dTaKrFbpPXoWQqA2Xfa6G8uXb/5956v
jSLK1QoAALAxhiKRiBk1avSFS5Ys+TOkCtDtulYDAOC1116b0NradHTYCR9KRHvF4/FpoVAo5DhO
ti9ViG6TTCZhjG6PRAoWu25yMZheixQVvXDEEUfUpf8KMTOk1999JAHoWQqAOXSvCUeurqx7ZnNL
rChkqxyfDgCjtVGDBg14f8aMvU9+6aWXNkGSgG63bTUg89rzzz8xgjlS3r9/yVTX1SN93wUxOcwc
ggKIuzSOakuZlDXTVr+l9N9lYsp8T+b/7/yeLyixMqWONO783sz3EBMMQFb6+7f52Zl/O3MdX1bG
3er6OPUeur7HzGsw+OynMPMeu/4bCmC9nX8zfa9gsFWA2d71db53IoZB5/HOmb/X+b+tLV/f3s/4
zLV9wb+5vdc7f0b6nne9N1v9HjRT5lq2+31dbPV7/4Lf0+f9Ljq/P/Pv0vZ/d8RMbJFhzR5Z0AqW
BvOqjkRited51WecccbmL3oWRPews30BeY4BYMzIqR+u3dSwjED7IvUY5vIwgFKKTGtr+z7r16+/
AsB8SCmu26Ubzs7Gc/78+ZntTSvTf97N9jUK0ZOi0aiaN28ed30WRPfK5Z5oriAAPLZ88D01za2X
GmZDOb76goiM7/uqX0m/+r1nzTrxlVdeeRtSBehxmURg3rx5mD9/fufZAkLkg8xnG6n9/QEJ+j1O
EoCepwCYvSeNvXjtptr7OjwfViqjzfV7b5hZjRgxcuEvf/nLc2R3QCGEyC25XIrOFQSAj5w1xVQ3
Ns9tjbuFtpU5ZTe3MTMlkonpH7z/QW19ff07SCU7kgAIIUQOyOlSdI5gACgpHLKqMBJ+XRGBc/dg
oK7IsiyTiCfQ2Njwv7MPO+wwbJmKJYQQoo+TCkDvUO+tWOFOGFk2uKktfryf2ugi5ysASCUBuq2t
rQjgvU47fc7TH364pA1SCRBCiD5PEoDeQQB4VPkgvyOePDWW9Eqs1IzufEgClFLKtHe0j3ATut/m
urq/Q7YJFkKIPk/Ktb2DAeC2rx+9uDAU+oCIwHnUQ1ZKkdYGlZVVV04cP/5bXb4kSYAQQvRRUgHo
PerOv7+nx5QPGNoRS87xtFGUH6sBgPR8gHgyQR0dHbMnTZq8ob6+/qP0e8uH9yeEEHlHKgC9hwFg
8qSR/ygsCG8yJre3A/zMm2NWjm0b3/fDjY0Nfzr88EPOTL9n+YwJIUQfJI1zL5t+4PErSorCLyhF
4DzbOIeZlWVZuqGhoWD58pW3zJw5cx8AuX4AkhBC5CVpmHuXWrRokR4/srwgHo+fGXO1ypNNgbZ6
j0op3dHR0a+trWX2iBEj/9Pc3FyN1Gctb+Y9CCFErpMKQO9iAJg4ofxfxYXhj5gZyLMqQJrlOI72
PH/K5s01f545c+aekEqAEEL0KdIg9z76ZPnGtuGDSwbHEt6RvsmryYBdKSLSxpihzc1NR86YMfPf
1dXVNZBKgBBC9AlSAeh9BADjyof+rV9BQZVJnQ2crwHRIiLt+3ra0qVLH95///2nI1UJkM+dEEJk
mTTEvY8B4IA5X/u0f7HzlJVnewJsh0VEWmt/xieffPLX/fbbb0/IlsFCCJF1MgSQHWrRokVmwqgh
XizhnhFLeGFL5eUwQOf7TQ0HcHl9ff3B06dP/09tbe1myJbBQgiRNdILyw4GgL0OOfa1fsVFr6SX
BOZ7ILSIYIzRs1asWPbwrFmz9oBUAoQQImukApA99N5773nTJw5PtLXGTo172snDJYGfec8ANDOG
NzY2HLDPPjNeq6qqkUqAEEJkgfS+suyYg/Z6qbRf8csE5N3GQJ/DAmC0Nvt//PHSB/bZZ59pSL1v
SUaFEKIXSaObXWrRO0uSkycM81pb42ckPW3n+VyAjHQlgEc2NDTsN2PGjNdrajorAUIIIXqBNLjZ
xQCw78Gz/lE2sORpSxEMB6YUrgAYY/SBS5Z8+vCee+55CLZUQPI9ARJCiKyTCkD2qXfeWZLca8aY
TW2tHSd2JPwSi8gg/4Ng5qRADfDwpqamo6dN2+PTzZs3r4EkpkII0eMkAegj1m2o2zBiSP9h7R3J
gw2DifI+AchQAGlmHtjQUH/E1KnTFtfV1a2FJAFCCNGjJAHoGxQAPmSfiVUtLR3HtSXcsoBUATrf
PxFpIhrY0NB4+IgRI5a0tLSshqwOEEKIHiMJQB+yYl1t3cQx5aVtbfGjPGNI5f+ywK4UAEOEgbFY
x+Fjx477sLGxcR0kCRBCiB4hZda+oTPQT9174l39i8KLOLUzUNACn0JqdcC4jZUb7x4/fvwMyBJB
IYToEdKw9i3qk0/Wtk+eMrwp1p48KeH6kYBVAYB0JQBAWUd7+15Txoz5V11TUwOkEiCEEN1KKgB9
CwPA937wy2fLSgseT88DDMLmQNtSAIw2+pA1VVUPTpkyaAqkEiByEDOIGcTRqGKOKmYojkJxNNrl
D9KvR1U0GlWpA0KF6HnyQet7FABzxP7jjvh0xea/tcTcAbYiw8FM1gwDyiLr9fETii/69NO6VdhS
IRCiT2KAwCDMByi6659V5lTVK3VgqBDdTxKAvokA8LQx5T9ZW9v0Y2OYiTpfDxIGwOkk4K0xY4su
XLasfgVSlQCd7YsTYhvEDCLqGvRZ1T71s8GUXDmLEhv768igCbbbNJRMQhsokGLF1mDX+GZVyI5V
++EJy25bPHhNNBr1O3/CAliogJFEQHS3oAWUXKEAmCvPOXnQy/96fcH62pYjbUsF9eS8VBLAULal
3hhYVnJhZWXdKkgSIPoQjkYVRaOdgX/NQ5dO6RduPljB/Sr7/gylzDDADyugMGRtPZ2FQUj62iel
OoyvGg1hheUUvJMwI19ppNmvTZ871039G1CYJxUB0X0kAei7FABzwhGzjnh/yeqFdc2xIY6lgjoU
AAAmlQRY7wwoKjq/ql4qASL7mJkAQiYoNz1+1REwdReQbjsWrMc4NmA0wzcMZoIxhpnxmVF+IlKK
CLYFKEUgEJIexciO/JOtkgUNhVOennRCtBX4bLIhxK6SBKBvIwB8+H5TvvfO4rW/NASoVEk8qL83
DcCylHp7+IiR565atWo1JAkQWcIcVUSpQFz12PWzCnnDDfBjJ4ctPcDVDM9nAGzSC1i2DOJtf5Jf
uldP6UNBiRSBCkIKSaN8Us7rjLLfDJj70DMAMTNUOumQaoDYZUHtTeaUH1x43B/GDu33F60NTLAf
eAuA8Y05YFPlhr/OmDx5PNJJQbYvTATLggUVFlHUbHz99YLmhWf8sMhf8XyY2i6E8QZ0JNi4PjMI
DJACWCFz9sXnz/BPn43BKvU9IMPg9oQ22vPsEJJHkKle2PTIiQ/U/vma8el5BiwrBsTukA9P36cA
mLO/etDYNxevemLD5uZZIUtpDnbQ08xs2Ra9MXHS1PMWL168FlIJEL2jc6Jf7ZMXTYh4zb+1uP0U
X2u4PhsQEXV/u8rMzJYiVRBWcI2zQjtDflR2xkMLU18EybwAsSskAcgNCoA5/bh9jnrt3ZWPNrQl
BjkWmfQyoaAyzKxsy3pn4qTJZ0kSIHpaenkfiMDVj5+3f9itubvQ4Zltcc2A4nRPv4cvAaYwrCyP
bd9w+JsDz37mj4AkAWLXSAKQOwgAH3Pw5K+/8cHam5MaZFsU9BJgqhKgrLcmjhlzzuLlyyUJED0i
85wRgRv/dtXJyt14q83x0XGXNQgKvfkcMrRtwyJLacP2Dwae/eKvM9coSYDYGUEOHrkmNX0IwKw9
JtyyfF311z3PY0ulOiXZvrgsSg8HWO8OKe1fsa6mZh0kCRDdqGvwr33yytPCftXdtomVxV3O2vwT
ZjaOrRRZBCbnhgFzX/gDgHSBQpIAsWOCXELONYz07+sbV5z842mj+z9p2HQmBQFmEZHWxuy3uaX5
0dFDh8rEQNFtugb/hiev+FrEr7xT6Y6sBv/U9ZDyNWvWBsT6dw0Lz7gcABANdGdA7CT5sOQeBcBE
Kw4eeOcrSxdsau44OmxTUDcJ6iqzRPDd0v6RM6urm9dDKgFiN3QN/vV/u+L0kFd1N+n4wLhrDBH1
ledNF4SU5cFuTPDgrw47+8/vcBRqd7YgFsEhCUBusgDob5x77KR//Of9p1dUtUyN2IFfGQB02Sdg
cL/Ss9fX1sqcALFLtun5z7X9qtuVjg1MeH2vusQMXVKkLBeF/+kITTl9+Mm/qZf5AGJH9JUsVuwc
DcC6+S8vrZw+ZsDVI/uHNnmGJdClg7025oD61pZHJwwfPgoyHCB2UmZODRF48+OXn2n5VXcoHR8Y
d7lPnkhJBKu9Q5sC5R4WcddeCQCYL5078eUkAchdGoB68t+r/m/skJKLBhTZVYalt4t0EuAbs39N
U+PCmTOHjoMkAWJnRFO957onr54d0pV/sk28f8Jj3YfK/tuhkHQ9KN1xddVD50+hKAxHo334ekVf
IB+Q3MYA1H+W1r48vKz48oKQVWdYKgHYkgQcuGZl618OnDliJCQJEDsgM37e8Mx1B4dM1Z02klmf
8LdDiFUiaUyBbUaFQy0XAgDmRWUIQHwhSQByW2YvcLV4dd0/hpaWXhKy7VqWJABIJwGe0Qd9vKpx
wd57jx0LSQLEF8gE/81PXXWE42540OGOSfFkDgT/TgpJ14dF/vkb/3zVJCKwVAHEF5EPR+7rTAJW
VtU8O2LYkGsc225MJwFBnwmsAGit9cErVtQ8NFMqAWL7KBP8a5+6+tCwv+kemzsmdsRMbn1WiFXS
NabA1qOLCpvnpF6MZvuqRB8mCUB+yCQBtGL1+idHDBt6mWPb9cysEOxKACEzMVCbw1atanhk2rRx
YyBJgOiCoyCKwrQ9e90RBbrqwc7gT7n3GWEArDU42X4qMyuKwgR8ozDxBSQByB+Z8T5asXrd34YN
HXyNbVtNnJoYGPRKQCYJOHTDhuoHZ86cKZUAAXTp+Tc+9/VDObnhXtt0jM/V4A8ARAqeb2DBm9Hw
5BVTAADRqCQAYrskAcgvnUnAqrUbHisvH3qFbamG9KFBQU8CFADj++aINWtW/HnWrGlSCQi4TM+/
6dnrjrDi6x+yTceEjpjRlKPBP/2uyNUMkBmi3c37AAD2+FQSALFdkgDkn84kYM2a9Y+PHF5+nWOr
pvRwQJCTAEJ6ToDnmSNWrlxz35577pnZJ0Ceg4Dp7Pk/9fVDlbvhHoc7xuVyz78LYoYusEGkeQ8A
wJKFshpAbJc0fPmp84FfsXrdoyNHjbzatq0mBhQFOwkA0pUAz+Mj165d+WC6EiBbKQdI52z/J649
TPnrH3J07o75f+57ZIbjWFOY2aIoTMBPDRWfQxq9/MVI9Xpp+fJVC0aXD/+6pdCkmRVRoJMASv8x
vs+zV6xYc8/+++85CpIEBELnbP+/feOQMG+8N8Qd49rzLPgDAINA3DZg8U17RbJ9LaLvkgYvv3VW
ApatWfOXSaNG3BBy7JjrG0VEkgSk5gQcvWTJyvv23Xf6aEgSkNeY05v8PH3NQQVY94DDHZPaO7TJ
7TH/z3uvDAB2YXhE3r030X2ksct/mUoAFq9Y++C+UyfMG1BUyEnPV0qSAALI+L45etmyVXdNny5J
QD7i1Li4IoKpeeSag2yv8j7bb5/YEdOaVF/e3ndXEXm+D6bi0c7YfctSr8lKAPFZefjhF9vRmQT8
37sf/2bG1HE/HVBSiLjrSSUglQSw7/Nxa9euuluSgPzCAKX39jf1j1+7f8SpesDhjqntHdqAKE97
x0xGG4DsgdqEigFg4UJZCSA+Sxq54GAARES86K2Pfrz35InfGDawfyzh+opAQd8sCACM1nzsmtUr
H5s0adKBkCQg5zGDwABFYeqfvPI0G+set3X75I64ydOef+aNE4ccB8Qdq9lsqgWAiiXTZSWA+Iz8
fQjE9nRWAl55+4Nb9pw09lvlA0vdhOdZBKkEADCGsX9V1YZ7pk+fvD8kCchZXY/0rXvsqpMdXXV3
yCRGxRK6Tx7p262IWVkKrJNNhXVPtwOQg4HEdknjFjyM9O/9pTfev2PPcWNuGFY2IJHwPKkEpP5o
rXn62jXr/jR69OjxSCUB+R0w8gxzZ9mf6x6/4pQQV96ldKysI276+JG+3YgYZIX0puqTsn0log+T
caHgIqRXCRxz0KxrFq9ae/PmxjY74liGg50Ydh6uZFn0woABRZdXVTVWArKbYi5gpMv+BN688NLj
Q6i53zbxIbGkMYEJ/oAuLbSsNrfg3rJz/n5Z5r5Ql1VBQgDBbuiDrnM44OU3P7h9xoSx3ywv65dI
eL4iOUCIkJoTMKe5OXbXsGHDZLOgHNBlwh/XLTzvpDBX32uZ+JC4ywHq+YMBVr4hGJhPAIAXwJLg
L7YnGA+F+DydScA/3/rwj9PHj/n20IGlXsLTVsB3DMwkAez7+qutrU13jhw5cgQkCeizOoN/FKZh
4VnHOabxLsWJ8njSBGsIh4ltpcg16HDC4Y8AABUy/i+2TxozsVUSsMeEMTeUl/VPJDwtOwam/mN8
Xx/X1FR/z/DhwzNLBIMTUHJA1+C/+ZGzjle65T4LifJEkHr+nTfDIGQTtKaNscTgxakXJQEQ2ycN
mcggAFhXVfPOgTOmNMeT8WNbOhK2bSmD4M4VySQBbAxP8tzE9OHD+/+zpSXWitSzIw1rlnUN/s1P
nne0xc332EiOiKfG/APXvjHABQU2uTr02NBzH1nInBoSyfZ1ib4pWNmx+CJdKwG3zZw6+psDS4p0
wtWyY2B6ToCn9XH1de33p4cD5CjhLNuq7P/ouXPgNdxvcWJkPFgT/rYgMBGpeJLZCRc9BQCYLzsA
is8XvIdEfJHOJODFfy++fcqEYTcNLClEQrYNJgBEIONpfVxTU/29Y8cOLockAVnTNfjXLzzvaMWN
d1kmGdzgn7oppqTAAiznP5tjodcByPp/8YWC+aCIL9K5T8Br7/7vf0+fMvJXA4oLEZckYEsS4Ovj
6uraHhw1atRwSBLQ67bq+T9y1nG2abjPpuSouBvg4A8wmC0NBd8U/3nS+X9u5SiUlP/FFwnqwyK+
mAGgiObqf701/4czJo3+df8iqQRg6yTg2MbGuvvGjRs3FJIE9Jquwb/mr+cdbanWOy0kRwVywt/W
N8YUF1pIsvN6e3jkowCAeRL8xRcL7gMjvkxnErDonU/+a+9po38hSQCAbSoBm2urH54+fawMB/SC
rXr+C845NqIa77M4MSYRtKV+n70vbFmwksbWPvX/6bjTf9/MHJXev/hSMkFEfBkFwDAzHXngzJ9/
tGztfzV3xBFxbGOYg5xAMgBmsHJs58W99hp2weuvr96MVCAK8kZKPWLbMX+bG++xODEm4XKwEy8C
wzD3Kwmpdjf0+7Kznr0xc79k8x/xZYLcgIsdk64EEC96++Pv77PHxJ/1LypA3JVKADKVAM877qOP
Nv1lwoQJQyCVgG63bc/f5sb7LU6MCdwmP9u7NwamX7Gt4sZ+pZlGRIHUWQgS/MWOCPTDI3ZYZmIg
r62seeXw/fYINzW1Hd6edMmxLMPBrSSlT5wjo7WZEI/F9h43btzzDQ0NHZB9ArrF1sH//GMtNN1t
cSIz5h/o9osZurhAWQku3OBZIy4ZdeZd61Ol/0XyuRM7JNAPkNgpnUnAmo01/zzigBl2fWPLEe1J
l0KSBBARsTZ6YkdH+77jxo1/TpKA3dc1+NcuPOu4EDfdb8MdGdRNfra6N+ng77LTkKThFwz92t1v
cBSKjlwU5Kqc2EmBfojETuMooBYBvHpD9atH7T8ztLmx+fCYVAK2qgTEOjpmjZVKwG7Zquf/xPlf
DXPT3RYnR8Sl5w9m6KKIsny26+JceOGws/76IkehKBrorbvFLghqgy12QxRQ0fRhQcd/Zf+fvPbu
kh+3JRIyMbDLUcKObf1z5KgxZy1btqwBMjFwp2UCWsOCc77qUPN9ipPlsYQO8jr/DF0YVpZnnPqk
KTx36LlPviTb/YpdFfSHSeyCKGCi6c/O8//3zv8cuu+0n5YWh2WJ4JZtg7Xn66MrN274y8SJEwdD
JgbuFF5QYVEUpvbRc+fYaLpPmWR5PGmCvc4fAKeDv892TdIqOW/ouU++xFEo6caJXSWNktgli7oM
B6xav+mVo/bf295c33hEh+vJcED6KGFjzMR4rGPWpMmTn62rq4tBhgO+FEeh6LolpvYvF86M2I33
h5Q7JpYwGhT4tkoXhZXlaXuzb/U7b0jFYy+nqyQ8Xz5TYhcF/aESu2ERwNEo1KJF4JUbNr161MF7
OXVNzUd0JGROQPq/xhgzsa21de+x48b9Q+YEfDFmKDoSpm7BRfuG7IYHHSSndcS1BP90z99lu0pT
yYWD5j7+T45CQYK/2E2BLqmJ3ReNwkSj6eGAf737o4NnzPhpSUEkNRygAj8coAAYz/fnbKqq/POM
GTMGQIYDPoMBSu9bbzYvuHjvENU/GKbkjI64byT4p4O/tquTpvCiQWc93tnzl7X+YncFtYcmulk0
ChVNz0I+/vADfvr6+0t+2BKPozBsG21kYiADKmQ7L8w+cOJlf3/loyqkk4NsX1y2MWdWUIAbFpx+
sE2Ju0PK3aO9Q3r+zGyKIpbyjL0hwYWXlp/zt86evwR/0R2C3DCLbhSNdpkY+O+3/3v2QXv+rH9J
BLGEpyypBJAimFjSnfPJ8srHf3jO4TOR3mERAU7CmZmIwETg+r+edrSNtocl+HfeG1MQspSnnUrf
lF6SCf7S8xfdSRIA0W2iXVYHPPXPN//7yP1n/HRgv2LE4m7gVwcwQ4Us0utq2g584e1lj//4vL0P
RSoJoEwvOEg4GlVExADQ+PgFV4as+GM29Pj2mAR/pMr+ypBV51v9Lhp07sJXMj1/SPAX3UgSANGt
ol2SgCdffvNHsw/a62dl/YuQ8HxFwU4CwIAVtqHfW9048bm3Nj5w06X7HgbAEIE5GphnMTXeH42a
2dFX7abHz7jBNpv/YMHrH0sG/GAfAGA2YYcszVa7p4u/O2juluAvPX/R3QLX8xC9IxqNqmg0agDg
1GMO+e9//Pv9HxnWEUuRYQ5MsPsMAqAIOpbQ1mF7DFj9vdNGXX/Kzz54Hth6PDzb19kTmEEggACu
fPjykUUFdT9RHLuYXY88LZMjmdlEQkoZ2C2+Lv7GoPOefJBT5/3l7WdCZJckAKIndU50mzF10lVL
V6/9rVKqkLaMfwcSAQjbZFo6PHXu4UPW/OzCSX8eM7j4ETrt+SVAai18PvX4um7rCwBNT549m7yW
X0dsb7/2mA82ZECBnigKMJuQoxQrq803/b4x6Jwn7k+9LLv8iZ4jCYDoaZ1JwJQpoy5Zt27zzcxc
TBTsJMAioDBEXN+apNuv2QPnHDV8GZvCX2xITn5srwtv6gDyo/Hvukf92idv6F/qb7jSovbvhEkP
buvwDYgyGycFVmfPn+wWn/pfP2juwodSr+f+71/0bYF+8ESvIaR7s5MnD7tiw/rG3xtwoCsBDCBi
EVxjOJFgWvSLWThg8gDfNaGn2Ol384BT//IvIF0NmJeaKZ/ta96J90aIgrZcd1TVLvzkmAjFbrDY
PV77Gq4v4/2pm8UmHFLKkNPmU/E3Bs194n4p+4veIgmA6C2dScDokSOv2Fxf9zvDXBToJICBsiJC
dVOST9h7CP/x61PVqMFhtCWokVXBAy3c75axcx9am/67OTE/YNtT6ar/dskeEa/+asXxS8IWitti
HsAwCPi+/gA6gz+T05rgftcPPfuxB1MvS89f9A5JAERv6kwCRo0ov6a+oenX2nBRkIcDCKkkoKox
ibuunc4Vhw81BLYcx4KrrXd8VXhrqxd5Yfy5f60Ftte7zjpiBjB/yxg/ANQ9ccVky2w+Q5nkZSHL
n5hM+vBTE/0CvfdBJ2YTslNj/hol3yw7+8n7ciXJE/lDHkTR27okAUOurqtv+Y1hLiQK7izwAofQ
3K4xY2wRHv3enhgxIGySnqbiAps8Q1pDvW1M+JEYDXx29NkPrM58X7pUTPPnRzEvGu21SYOpJCRK
mBcFaOvJitWPnTM9RPGzLJ04yyFvMjMjntRdFgAIADpsk6Vhxzwq/vqQs5+8D5Cev+h98kCKbOhM
AkYOH/z1+sbWXxnmgqAOBxCAAYWE6qYk7v3Gnqg4dCgSrmZmZqVIFYYVXE1gZX8CKljgMb3a2Dbp
o6mX/aqt689hBmF++pmel7q/uxtQOjcp6vJzt/2ZDc9d389vrjkwZCXmEJKnWcpMIGMQdzWDwaQo
kJsdfQ4dcZRl2Eq4VHrD4LMfuwOQ4C+yQx5KkS1b5gSMGHZBfVPTL31thgU1CSiNEDa3uDjtgMH4
zeVTUFZiw/UYREglAkSqIKzAIBimGsNqsaHQhz5H3kVR2YeDT/rT6u1ttLT1BkPRrb84L5oKOPOj
27QD0cx/tltVWMALrP3/+uSkIrttL5vd/ZThfUC8d8SmgZ6vkXA1ABnn3xYzm8KwpXxj1Xrc78bB
5z7+19TrEvxFdkgCILKpMwkYN2r4KZsbGm/ztBkZxCTAVkChDdS1+Xj2f/bGEXv0R9zV6VVyAAAG
pyrpjqUoElIgIsQ9cpVlLTPkfOL7agnZRe+CRn5aU7O2eY9rF8SJSO/OdX26IBqy2jaE+5d4gyyO
7QndPstRvAcI05n11EKHbDaMuKfh+5xKQBQRpMe/LV0QUpZnnGrPlF4+5LwFz8mYv8g2eUhFtmU+
gzxx9PCTa+ob73ADWgkYWECobk7iFxdMxuVzRgBgGAPQNk8pA5y6P0yWIhV2FJQiuD5ASjVrTRsY
ZgNUvw0wbUs8GtyWcHmNE18RQ7iM7AF7GhUZFK9C40bPLeYxRQWjvPp1xYgtA5KtjILxhY7lj1G2
W66UtQf7HcMUqbEEHkEw/UI2wTcM1zPQhk16HqCSMf7PpQtCyvKNVe/SwAuHnP3o87m4vFPkH3lg
RV/QmQSMHTX81LrGxls9P3iVgKIQobHNwxkHDcHvr5iCkgIFz+fPJADbSFUGAChFpBSRYxGUIhgG
DDOMURowdTAmycoisoqMsuwO329fDzDbdslYY9xi9mMENgyoCBENUootiwgEQDPD1wxtmNmk/j3Z
xGeH6IijLA27zqOSywaf9fgz+bbTo8hd8vCKvmKr4YC6xsY/uX6wKgEhi9CW1OhXGMb//WQGJgwr
RNw1UDv4lKajCROI0wcNZo4ihmMRSCkwGMQGRIClUosutNEwjPSQPYGNgacZhjM/NhXwecuAhLQb
O0ZHQsryNTq0XXLBoLlPPdn1PIRsX5wQdrYvQIg0RjqwrN246ekJI4dZ1fUN9/uMfoRgLBHUzBgQ
UWhqS6C22cOE4bRTkXZLcOZUiCEwONWnT/pgwE//TZUK6+n/TVDpb9Zbvr4lyFNmEEKi/k7REUdZ
vuY2z6grhmSCPyT4i74jED0rkTM6G8bVldVP9i8t+ZFFcDkV/PP+KGFmwLZSt6E55u/uj0N6Il76
DyuA0n9YgVgRkSIilTqIZ5uvd36f2AXpsj+SPqsrh5z/z0dlwp/oiyQBEH1NZyVgU23DLWWlJd+1
CHHucqhQvmIAliIABo3tbmZoX+QQzvT8Dcc9VpcOPu+fj0jwF32VJACiL+pMAiprG24uKy35vgK5
+Z4EZKbSA0B6z/wvmwAo+hZd4CjLMHua6KrB57z8Fwn+oi+TBED0VVslAYPKir9tgQJRCQAAbbbc
BNH3ZXr+Bkga2JcNOueVhxgS/EXfJgmA6Mu2JAGbGm4dXFb8X4ryuxKQiRSORV3WRYi+LBP8meEZ
Y1814JyXHmKWI31F3ycJgOjrOpOADZsabhlaUvwtRUjkYxJAhMzSO5QWOVL/zwHMqU1+GJT0tXXp
gHNffCDzNQn+oq+TBEDkgs4kYH1dw20jSkq/p1KrA/IqCSAAWjMAhf7FIUj86NsY0AUhsgzbroeC
Kwee/9LDzCDZ21/kCkkARK7oTAJW19XdMqz/wG8R4OVTEqAI8HwAsDCw2JY1eH0YA7owRJaBndSI
XDro7L8/mPmaBH+RKyQBELlky2ZBNTW3jRw26Dtk4CNPkgBLEVriBuOGFaC8NARjJI70UbrAIUsb
2zUovHLg2U//WXr+IhdJAiByzZZKwLpNN48ZM/AGo+HnQyUgZAGAxuHTStC/xOlcCSD6FB1Jlf0T
GoWXDDj7Ken5i5wlCYDIRZ1JwIpVNbdNmjjoWzC5nQQQMgkA44CJ/VAYVqkKgIwD9CU67JCljRXX
quiKgec89Rfp+YtcJgmAyFWdScCSZZtumTRx0A2cw5WAkE1o6jAAQpgxrgSORdCGJf73HToSUpY2
VtyYkksHnvW3hzNfkOAvcpUkACKXdSYBny7ddNukCYO+DQ0vvZd9TiUBhQ4Qdz1cNHsQxg+NwNNd
zt4T2abDDlm+Ue2+6Xf5wPOefER6/iIfSAIgct2WSsDyTTdPmjToRqNJ51IlgGhLpX/OPoMwoMiB
7xvZBqBv0JEQWZqtdo+LLxt8/hN/yXxBgr/IdZIAiHywVSVg7Ljyb8FwTiwRZABFDqG62cMxMwfj
wKml8I2BDP5nHzObiKMsn61mD0WXDzn3bwuk5y/yiSQAIl90JgErV264eeKEwd9mDYM+ngRYBIRs
ADC4Ys5wDC514Hosvf8sY2YTdpTyjWoxpvTyIec89ajs7S/yjSQAIp9sNTFw/ISybxkDD300CWAG
BhYqVDclcdkxI3HY9AHpnQBFlumwo5SBinuq8Iqycx9/XPb2F/lIEgCRbzqTgOXLq/8wfvyg7xht
NPexiYHMQFGIsKlNAyjAFceNQL8CBVfG/rOLyTgWLAOlDZX8cMjZTy/MfEmCv8g3VrYvQIgeogBw
Q0PbW5PGjWxubu04isAOQFkfYGcAYZtQGALaOlw88p3pOHR6fySSRmb+ZxEBOmTDMsqJG3vwdwad
9djNACBj/iJfSQIg8lVnJaChqeWtsWPHNjc1NR2nlLKQqgRkJdIyAFsBA4sUqhqT+NkFk/C1w4eC
DcOwHACYNcwmElKWsSJx1x71nSFnPnhb6mUJ/iJ/yRCAyGepo/UArF69+tZRo0bfyMwJZigAutcv
hoGIRSgrVNhYn8APKybg4uNGwFGAr6X0nxUEZmYTCSvlk12ZtEZdNfRr9/wRAJhZgr/Ia9LkiCAg
pJIBjBo1/LqG+obfeNqEFZFGL1XBDAOlYYKlgNqWJL5/5nhcd9Io9AsrJFwDpeRRzAIGmIvClvLY
WeEZ59pB5/z9n4D0/EUwSAVABEHncMDGjZtumzF9j2tLi4rqkp62AJiebOgZgKWAIcUK9W0atS1J
/OriKfjGqaPRLyLBP1sYYAJQFLaUywVvx0LjLhh0zt//Kev8RZDIHAARJAQAVZtqPth3xuT3yST3
bO7wh/uGKWyTIUr1/LrrH1MEDCggOBZQ05xEcagAf/7OHjjjkCFwFMGV4J8dzMZWpAoiNiW083Qi
POWyYaff+ilHoXAkQPMl+ItgkNZHBE3mM883XnjUiH+98/EPK6vbL65t9gphEQYVKTYMSvoMfxcW
DSoCQhYhbKc2+aludgEQrj9hJC4+dgSmjChE0jPQWjb7yQpmE7KVApFnnNLblyeO/PFB53+jlaNQ
FO07y0SF6A3SBImgUgAMc4V1zfHvV6yvbf/2ohUt+8U7EgwolJXYFHEIngZcH9AMGE7N1M+MJxAB
iii1m58FOBbBMKOmWQPwARDOPHgozj9yGA6eWoqCsEIimYoxEvx7HQPEhWEoTzuN2ir5yS1LZtwS
jUYNL6iwaO7CXp8UKkS2STMkAisKqGh6c6A3f3XEpJVVjTes2BS75PVlzQX//LjJpE4VJIAs9IsQ
wjbBtrY8MtoArm/QkgRYa2T2GRpZVoxTDhiIOfuUYe/xJSgrceB6Bp42UBL5ex+TUYpVQVjBNeH3
k1T2/aFzH34JAKTnL4JMWiMRaLzlMD7D71aUNiyp+2lTXF+9tKrden95q168rkMtWtpGja0eUr36
rrGCANgAKZy4dz/sNb4Ek0cWYvroYoweHEFBWMFohuunhpQl9vc6BmBCDlnMClDhBfXulP+eeMHv
VnFqASCISMb7RWBJkyQEgGgUKhqF4VcvjsSbay8n0j9QxgyvrE+iJeabWNyo1riHtriHpGdgW4SS
AgelBQ4KCxT6FdkYWOggHFZgw/C1gZ8uKkvg733MbCxFqjhiIa5VlcelN2n3wLvKL/xuR7rXz4BM
9hPBJk2TEGmZJAAAqv960uxCy/1/IcscqsBwPRhOrRzr7DJm1tAyUuv8tTbwTWqGQGaOgOhdDDAx
c0HYUpqVNmQ9GzcDbhp+ziP/BgCORhVFo1LyFwKSAAixla5rwDcuuHFghNdeZ5mOKyO2HhlLGhjD
hohU+u+C051ISj9KEvSzgwGA2Tg2qUjYhqutpS71/+1tg66+P3rkkX6q5C8H+gjRlTRXQnwWcRSU
mRxW88hZB4VVx/fIJE6xyVjxpM5M5ZeNtLKMCMyGGQQqLrDJ1SrGKnJ/uzXgDyPPeHAFADBHFZH0
+oXYliQAQnyOrtWAT1+NFpfXLz5bcccNBZae7noaSdcYJspMIhS9jgxgqCBsEUhBw37dU/1vekWf
8fTcuXN1ZlMn6fULsX3ScAnxBRggdKkGbF5w2USbGi61TOziiG2GxRI+fAON1JQAeZ56QXobX+NY
ZIVCFjxjrfYp8qe2RMmfx17wcDUgY/1C7AhpsITYAdv2Jusfu+BAxc1fJ06cUWiZwlhSw/PZpAoC
8lz1DDJgA8cmVVhgI+6pJqjIfZ4qvXvQGQ8tBdK/p1RJRnr9QnwJGcMUYgcQgYnAHIVigAad+dBb
L/O+l3k08MyYjjxGthMrKbKVpUBIbRzIUnrefal7SAYM7VisSopsxVaotUMXPBxD2emlZz71nUFn
PLSUGRSNQhGBJfgLsWOkpyLELug6P+D1BTcWTELlUTZ3XK7gfTXimEg8kaoIAJDJgruImQ0RKOwo
ikRsxF1q1Qj9PaaL711cd8h/TvjGN5KA7OYnxK6SBECIXcQMwvwt8wPW3heNlBZ9erRS8Utg3GPD
tunnuxoJ16R2B5DhgR3BzMxEQGHYUqQUPK02aTv8TMwvefQnzV/5z51XXeUBqcCPqPT4hdhV0hgJ
sZu2TQTefSZaOMGs2I+TLWcr5Z9UQGaUYYN4QsM3bAgAE8lBwFswAANmsixSBWELpBSS2lrOquDx
pBdaMPTxr32ChXM1kNqwad48GWIRYndJGyREN9k2EQCA9X85Z3qJ3X6ypfxTYfx9IjaHPM8g4WrD
TMyUPh+IA/csMkAMZiYFVeAoUraC61OCVegjYxc80YJBC8ad/qd1nd8QhYIEfiG6TdAaHSF63PYS
gconrisr0vWHsYmdqVTy0BCZcZZiJF0D12MYZpM+mCaflxN29vSJSIVDCpGQQsIDNJzVnlH/VOHi
xxubCj+YdOl9dZ33Eqk7IqV+IbpXvjY0QvQFxNEoYV50q17rxj+fOykUShxb4PAxfqz9QMsyw8M2
QfsGCc/AMDQzEyg9ayBXqwMEZgbAzETEloIVcRSUpZDwAYZaS8peZHT4n25h2evlp9y9NvOt20ui
hBDdKzcbFiFyzPYC2usLbiwY5dWO7FcYO9CPJ060bOwH6HFFDixtGImkhqcZDGYCZb4vs6Kgrz27
nDoGKfX+GKwUiEI2IRRSsJRCh8sJUvYaY5z3ORx5fnNr5I2p907YiEVRP/U9qU2XpMwvRO/oa42I
EPmOOJreVGib3u2mxy8bo7yWvR3l7WUrd3/29SFKmYGOAhQYnma4voFhMHP6e5nS5xAxdT7NPVUx
yARlTr0NsEn9N/WvWZYCwo6CbRE0CEmPmdmqtULOe4Yib3u+eZvDZR8MPfXu2q4/lqNQ8wFEpbcv
RK+SBECILMlUBYDPJgMbF9xYEFI1kxzEp7Pv78cws2xLj4TWIx3FBSFHwRgDTzOMATxfw3Cq5k6p
04k7pecW7OI1cmYHRACp/QwUMRxbwVKEkKMAJiQ8DQ27g4g2aIMVsAqWGNt6uyUW/rSpvbhqv6vu
jHX+zHRPfz4Amc0vRPZIAiBE30CpAfP5BEQ/ExSjr75qX9745/KIrp3s6cjoApWcTA7GGs/fEzpR
YuCMsJXnKEVwLLWls84MY3jLOcXc9T+Zf2JL8WDL/8NQtGUPI8MEz9dgImjjuApeNaxwDch8rFFY
7XlmqeXY1Vw4ZNmQE/9Ys+2b60x2JOAL0WdIAiBEH7SlOhAFEMX2JsNFX43aZ234qNS2RhYM6ocJ
3PFhsSoaVc6ut7eJ10RANrNdPEQpGmfpdovB6QIBEREInI7uxIYZDHA6OFswVhFr1mvhttYotmwq
KKsD3A/hx9pQMqs1lkysTeqatglzF7Zs9/qjmbkKUWw7CVII0TdIAiBEDuDMCPzCCrUQC1FRAbOj
QXXzq7cVW1V/V42NjVDhElIhn2wdVna/fhYANLa26kIraYxrs0m28UAMhJ5xiRly5Nz2Hbo2BmEh
1EJUoKJi4Q5flxAiuyQBECJHpaoE0c4qwRZb/vfuHonL0eiWnvw2/4aM4QuR2yQBECLP8S6uCpDA
LoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE
EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC
CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ
QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII
IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE
EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC
CCGEEEIIIYQQQgghhBBCdPr/NgCGRqwqXGkAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjAtMDgtMDhU
MTc6MDQ6MjIrMDA6MDBKA7U4AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIwLTA4LTA4VDE3OjA0OjI3
KzAwOjAwaWYiIwAAACh0RVh0aWNjOmNvcHlyaWdodABDb3B5cmlnaHQgQXBwbGUgSW5jLiwgMjAx
NVH9efwAAAAadEVYdGljYzpkZXNjcmlwdGlvbgBEaXNwbGF5IFAzj3m7vAAAAABJRU5ErkJggg==" />
</svg> </svg>

Before

Width:  |  Height:  |  Size: 5.7 KiB

After

Width:  |  Height:  |  Size: 44 KiB