mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-06 09:23:19 +08:00
添加 problem 978
This commit is contained in:
@ -5,15 +5,12 @@ func findDiagonalOrder1(matrix [][]int) []int {
|
||||
if matrix == nil || len(matrix) == 0 || len(matrix[0]) == 0 {
|
||||
return nil
|
||||
}
|
||||
row := len(matrix)
|
||||
col := len(matrix[0])
|
||||
dir := [2][2]int{
|
||||
row, col, dir, i, x, y, d := len(matrix), len(matrix[0]), [2][2]int{
|
||||
{-1, 1},
|
||||
{1, -1},
|
||||
}
|
||||
}, 0, 0, 0, 0
|
||||
total := row * col
|
||||
res := make([]int, total)
|
||||
var i, x, y, d int
|
||||
for i < total {
|
||||
for x >= 0 && x < row && y >= 0 && y < col {
|
||||
res[i] = matrix[x][y]
|
||||
|
@ -1,9 +1,5 @@
|
||||
# 509. Fibonacci Number
|
||||
# [509. Fibonacci Number](https://leetcode.com/problems/fibonacci-number/)
|
||||
|
||||
Created Time: Aug 24, 2019 2:52 PM
|
||||
Difficulty: Easy
|
||||
Link: https://leetcode.com/problems/fibonacci-number/
|
||||
Tags: Array,Dynamic Programming,Math,Recursive
|
||||
|
||||
## 题目:
|
||||
|
||||
|
@ -0,0 +1,43 @@
|
||||
package leetcode
|
||||
|
||||
// 解法一 模拟法
|
||||
func maxTurbulenceSize(A []int) int {
|
||||
inc, dec := 1, 1
|
||||
maxLen := min(1, len(A))
|
||||
for i := 1; i < len(A); i++ {
|
||||
if A[i-1] < A[i] {
|
||||
inc = dec + 1
|
||||
dec = 1
|
||||
} else if A[i-1] > A[i] {
|
||||
dec = inc + 1
|
||||
inc = 1
|
||||
} else {
|
||||
inc = 1
|
||||
dec = 1
|
||||
}
|
||||
maxLen = max(maxLen, max(inc, dec))
|
||||
}
|
||||
return maxLen
|
||||
}
|
||||
|
||||
// 解法二 滑动窗口
|
||||
func maxTurbulenceSize1(A []int) int {
|
||||
if len(A) == 1 {
|
||||
return 1
|
||||
}
|
||||
// flag > 0 代表下一个数要大于前一个数,flag < 0 代表下一个数要小于前一个数
|
||||
res, left, right, flag, lastNum := 0, 0, 0, A[1]-A[0], A[0]
|
||||
for left < len(A) {
|
||||
if right < len(A)-1 && ((A[right+1] > lastNum && flag > 0) || (A[right+1] < lastNum && flag < 0) || (right == left)) {
|
||||
right++
|
||||
flag = lastNum - A[right]
|
||||
lastNum = A[right]
|
||||
} else {
|
||||
if right != left && flag != 0 {
|
||||
res = max(res, right-left+1)
|
||||
}
|
||||
left++
|
||||
}
|
||||
}
|
||||
return max(res, 1)
|
||||
}
|
@ -0,0 +1,62 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type question978 struct {
|
||||
para978
|
||||
ans978
|
||||
}
|
||||
|
||||
// para 是参数
|
||||
// one 代表第一个参数
|
||||
type para978 struct {
|
||||
one []int
|
||||
}
|
||||
|
||||
// ans 是答案
|
||||
// one 代表第一个答案
|
||||
type ans978 struct {
|
||||
one int
|
||||
}
|
||||
|
||||
func Test_Problem978(t *testing.T) {
|
||||
|
||||
qs := []question978{
|
||||
|
||||
question978{
|
||||
para978{[]int{0, 1, 1, 0, 1, 0, 1, 1, 0, 0}},
|
||||
ans978{5},
|
||||
},
|
||||
|
||||
question978{
|
||||
para978{[]int{9, 9}},
|
||||
ans978{1},
|
||||
},
|
||||
|
||||
question978{
|
||||
para978{[]int{9, 4, 2, 10, 7, 8, 8, 1, 9}},
|
||||
ans978{5},
|
||||
},
|
||||
|
||||
question978{
|
||||
para978{[]int{4, 8, 12, 16}},
|
||||
ans978{2},
|
||||
},
|
||||
|
||||
question978{
|
||||
para978{[]int{100}},
|
||||
ans978{1},
|
||||
},
|
||||
}
|
||||
|
||||
fmt.Printf("------------------------Leetcode Problem 978------------------------\n")
|
||||
|
||||
for _, q := range qs {
|
||||
_, p := q.ans978, q.para978
|
||||
fmt.Printf("【input】:%v 【output】:%v\n", p, maxTurbulenceSize(p.one))
|
||||
}
|
||||
fmt.Printf("\n\n\n")
|
||||
}
|
58
Algorithms/0978. Longest Turbulent Subarray/README.md
Executable file
58
Algorithms/0978. Longest Turbulent Subarray/README.md
Executable file
@ -0,0 +1,58 @@
|
||||
# [978. Longest Turbulent Subarray](https://leetcode.com/problems/longest-turbulent-subarray/)
|
||||
|
||||
## 题目:
|
||||
|
||||
A subarray `A[i], A[i+1], ..., A[j]` of `A` is said to be *turbulent* if and only if:
|
||||
|
||||
- For `i <= k < j`, `A[k] > A[k+1]` when `k` is odd, and `A[k] < A[k+1]` when `k` is even;
|
||||
- **OR**, for `i <= k < j`, `A[k] > A[k+1]` when `k` is even, and `A[k] < A[k+1]` when `k` is odd.
|
||||
|
||||
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
|
||||
|
||||
Return the **length** of a maximum size turbulent subarray of A.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
Input: [9,4,2,10,7,8,8,1,9]
|
||||
Output: 5
|
||||
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
|
||||
|
||||
**Example 2:**
|
||||
|
||||
Input: [4,8,12,16]
|
||||
Output: 2
|
||||
|
||||
**Example 3:**
|
||||
|
||||
Input: [100]
|
||||
Output: 1
|
||||
|
||||
**Note:**
|
||||
|
||||
1. `1 <= A.length <= 40000`
|
||||
2. `0 <= A[i] <= 10^9`
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
|
||||
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
|
||||
|
||||
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
|
||||
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
|
||||
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
|
||||
|
||||
返回 A 的最大湍流子数组的长度。
|
||||
|
||||
提示:
|
||||
|
||||
- 1 <= A.length <= 40000
|
||||
- 0 <= A[i] <= 10^9
|
||||
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
|
||||
- 给出一个数组,要求找出“摆动数组”的最大长度。所谓“摆动数组”的意思是,元素一大一小间隔的。
|
||||
- 这一题可以用滑动窗口来解答。用一个变量记住下次出现的元素需要大于还是需要小于前一个元素。也可以用模拟的方法,用两个变量分别记录上升和下降数字的长度。一旦元素相等了,上升和下降数字长度都置为 1,其他时候按照上升和下降的关系增加队列长度即可,最后输出动态维护的最长长度。
|
Reference in New Issue
Block a user